Solve for x
x=-\sqrt{24-3\sqrt{51}}\approx -1.604903335
x=\sqrt{24-3\sqrt{51}}\approx 1.604903335
x=\sqrt{3\sqrt{51}+24}\approx 6.739754097
x=-\sqrt{3\sqrt{51}+24}\approx -6.739754097
Graph
Share
Copied to clipboard
\left(36-3x^{2}\right)\left(6^{2}-x^{2}\right)=945
Calculate 6 to the power of 2 and get 36.
\left(36-3x^{2}\right)\left(36-x^{2}\right)=945
Calculate 6 to the power of 2 and get 36.
1296-144x^{2}+3x^{4}=945
Use the distributive property to multiply 36-3x^{2} by 36-x^{2} and combine like terms.
1296-144x^{2}+3x^{4}-945=0
Subtract 945 from both sides.
351-144x^{2}+3x^{4}=0
Subtract 945 from 1296 to get 351.
3t^{2}-144t+351=0
Substitute t for x^{2}.
t=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 3\times 351}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -144 for b, and 351 for c in the quadratic formula.
t=\frac{144±18\sqrt{51}}{6}
Do the calculations.
t=3\sqrt{51}+24 t=24-3\sqrt{51}
Solve the equation t=\frac{144±18\sqrt{51}}{6} when ± is plus and when ± is minus.
x=\sqrt{3\sqrt{51}+24} x=-\sqrt{3\sqrt{51}+24} x=\sqrt{24-3\sqrt{51}} x=-\sqrt{24-3\sqrt{51}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}