Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(27+54\sqrt{2}+36\left(\sqrt{2}\right)^{2}+8\left(\sqrt{2}\right)^{3}+\left(3-2\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(3+2\sqrt{2}\right)^{3}.
\left(27+54\sqrt{2}+36\times 2+8\left(\sqrt{2}\right)^{3}+\left(3-2\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
The square of \sqrt{2} is 2.
\left(27+54\sqrt{2}+72+8\left(\sqrt{2}\right)^{3}+\left(3-2\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Multiply 36 and 2 to get 72.
\left(99+54\sqrt{2}+8\left(\sqrt{2}\right)^{3}+\left(3-2\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Add 27 and 72 to get 99.
\left(99+54\sqrt{2}+8\left(\sqrt{2}\right)^{3}+27-54\sqrt{2}+36\left(\sqrt{2}\right)^{2}-8\left(\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(3-2\sqrt{2}\right)^{3}.
\left(99+54\sqrt{2}+8\left(\sqrt{2}\right)^{3}+27-54\sqrt{2}+36\times 2-8\left(\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
The square of \sqrt{2} is 2.
\left(99+54\sqrt{2}+8\left(\sqrt{2}\right)^{3}+27-54\sqrt{2}+72-8\left(\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Multiply 36 and 2 to get 72.
\left(99+54\sqrt{2}+8\left(\sqrt{2}\right)^{3}+99-54\sqrt{2}-8\left(\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Add 27 and 72 to get 99.
\left(198+54\sqrt{2}+8\left(\sqrt{2}\right)^{3}-54\sqrt{2}-8\left(\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Add 99 and 99 to get 198.
\left(198+8\left(\sqrt{2}\right)^{3}-8\left(\sqrt{2}\right)^{3}\right)\times \frac{1}{2}
Combine 54\sqrt{2} and -54\sqrt{2} to get 0.
198\times \frac{1}{2}
Combine 8\left(\sqrt{2}\right)^{3} and -8\left(\sqrt{2}\right)^{3} to get 0.
99
Multiply 198 and \frac{1}{2} to get 99.