( \text { ii } ) \frac { 2 } { 5 } \times ( \frac { - 1 } { 9 } ) + \frac { 2 } { 5 } \times ( \frac { - 3 } { 7 } )
Evaluate
-\frac{8}{63}\approx -0.126984127
Real Part
-\frac{8}{63} = -0.12698412698412698
Share
Copied to clipboard
-\frac{2}{5}\times \frac{-1}{9}+\frac{2}{5}\times \frac{-3}{7}
Multiply i and \frac{2}{5}i to get -\frac{2}{5}.
-\frac{2}{5}\left(-\frac{1}{9}\right)+\frac{2}{5}\times \frac{-3}{7}
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{-2\left(-1\right)}{5\times 9}+\frac{2}{5}\times \frac{-3}{7}
Multiply -\frac{2}{5} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{45}+\frac{2}{5}\times \frac{-3}{7}
Do the multiplications in the fraction \frac{-2\left(-1\right)}{5\times 9}.
\frac{2}{45}+\frac{2}{5}\left(-\frac{3}{7}\right)
Fraction \frac{-3}{7} can be rewritten as -\frac{3}{7} by extracting the negative sign.
\frac{2}{45}+\frac{2\left(-3\right)}{5\times 7}
Multiply \frac{2}{5} times -\frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{45}+\frac{-6}{35}
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 7}.
\frac{2}{45}-\frac{6}{35}
Fraction \frac{-6}{35} can be rewritten as -\frac{6}{35} by extracting the negative sign.
\frac{14}{315}-\frac{54}{315}
Least common multiple of 45 and 35 is 315. Convert \frac{2}{45} and \frac{6}{35} to fractions with denominator 315.
\frac{14-54}{315}
Since \frac{14}{315} and \frac{54}{315} have the same denominator, subtract them by subtracting their numerators.
\frac{-40}{315}
Subtract 54 from 14 to get -40.
-\frac{8}{63}
Reduce the fraction \frac{-40}{315} to lowest terms by extracting and canceling out 5.
Re(-\frac{2}{5}\times \frac{-1}{9}+\frac{2}{5}\times \frac{-3}{7})
Multiply i and \frac{2}{5}i to get -\frac{2}{5}.
Re(-\frac{2}{5}\left(-\frac{1}{9}\right)+\frac{2}{5}\times \frac{-3}{7})
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
Re(\frac{-2\left(-1\right)}{5\times 9}+\frac{2}{5}\times \frac{-3}{7})
Multiply -\frac{2}{5} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
Re(\frac{2}{45}+\frac{2}{5}\times \frac{-3}{7})
Do the multiplications in the fraction \frac{-2\left(-1\right)}{5\times 9}.
Re(\frac{2}{45}+\frac{2}{5}\left(-\frac{3}{7}\right))
Fraction \frac{-3}{7} can be rewritten as -\frac{3}{7} by extracting the negative sign.
Re(\frac{2}{45}+\frac{2\left(-3\right)}{5\times 7})
Multiply \frac{2}{5} times -\frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
Re(\frac{2}{45}+\frac{-6}{35})
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 7}.
Re(\frac{2}{45}-\frac{6}{35})
Fraction \frac{-6}{35} can be rewritten as -\frac{6}{35} by extracting the negative sign.
Re(\frac{14}{315}-\frac{54}{315})
Least common multiple of 45 and 35 is 315. Convert \frac{2}{45} and \frac{6}{35} to fractions with denominator 315.
Re(\frac{14-54}{315})
Since \frac{14}{315} and \frac{54}{315} have the same denominator, subtract them by subtracting their numerators.
Re(\frac{-40}{315})
Subtract 54 from 14 to get -40.
Re(-\frac{8}{63})
Reduce the fraction \frac{-40}{315} to lowest terms by extracting and canceling out 5.
-\frac{8}{63}
The real part of -\frac{8}{63} is -\frac{8}{63}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}