Evaluate
\sqrt{6}+2\sqrt{3}-\sqrt{2}-2\approx 2.499377796
Share
Copied to clipboard
\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{2}-\frac{\sqrt{2}}{\sqrt{3}}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{2}-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{2}-\frac{\sqrt{2}\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{2}-\frac{\sqrt{6}}{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(\sqrt{6}+\sqrt{3}\right)\left(\frac{3\sqrt{2}}{3}-\frac{\sqrt{6}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{3}{3}.
\left(\sqrt{6}+\sqrt{3}\right)\times \frac{3\sqrt{2}-\sqrt{6}}{3}
Since \frac{3\sqrt{2}}{3} and \frac{\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{6}+\sqrt{3}\right)\left(3\sqrt{2}-\sqrt{6}\right)}{3}
Express \left(\sqrt{6}+\sqrt{3}\right)\times \frac{3\sqrt{2}-\sqrt{6}}{3} as a single fraction.
\frac{3\sqrt{6}\sqrt{2}-\left(\sqrt{6}\right)^{2}+3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}}{3}
Apply the distributive property by multiplying each term of \sqrt{6}+\sqrt{3} by each term of 3\sqrt{2}-\sqrt{6}.
\frac{3\sqrt{2}\sqrt{3}\sqrt{2}-\left(\sqrt{6}\right)^{2}+3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}}{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{3\times 2\sqrt{3}-\left(\sqrt{6}\right)^{2}+3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}}{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6\sqrt{3}-\left(\sqrt{6}\right)^{2}+3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}}{3}
Multiply 3 and 2 to get 6.
\frac{6\sqrt{3}-6+3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}}{3}
The square of \sqrt{6} is 6.
\frac{6\sqrt{3}-6+3\sqrt{6}-\sqrt{3}\sqrt{6}}{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{6\sqrt{3}-6+3\sqrt{6}-\sqrt{3}\sqrt{3}\sqrt{2}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6\sqrt{3}-6+3\sqrt{6}-3\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{3}-2+\sqrt{6}-\sqrt{2}
Divide each term of 6\sqrt{3}-6+3\sqrt{6}-3\sqrt{2} by 3 to get 2\sqrt{3}-2+\sqrt{6}-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}