Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{\frac{192}{4}+\frac{1}{4}}\sqrt{6}}{\sqrt{27}}
Convert 48 to fraction \frac{192}{4}.
\frac{\sqrt{\frac{192+1}{4}}\sqrt{6}}{\sqrt{27}}
Since \frac{192}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{\frac{193}{4}}\sqrt{6}}{\sqrt{27}}
Add 192 and 1 to get 193.
\frac{\frac{\sqrt{193}}{\sqrt{4}}\sqrt{6}}{\sqrt{27}}
Rewrite the square root of the division \sqrt{\frac{193}{4}} as the division of square roots \frac{\sqrt{193}}{\sqrt{4}}.
\frac{\frac{\sqrt{193}}{2}\sqrt{6}}{\sqrt{27}}
Calculate the square root of 4 and get 2.
\frac{\frac{\sqrt{193}\sqrt{6}}{2}}{\sqrt{27}}
Express \frac{\sqrt{193}}{2}\sqrt{6} as a single fraction.
\frac{\frac{\sqrt{193}\sqrt{6}}{2}}{3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\sqrt{193}\sqrt{6}}{2\times 3\sqrt{3}}
Express \frac{\frac{\sqrt{193}\sqrt{6}}{2}}{3\sqrt{3}} as a single fraction.
\frac{\sqrt{193}\sqrt{6}\sqrt{3}}{2\times 3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{193}\sqrt{6}}{2\times 3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{193}\sqrt{6}\sqrt{3}}{2\times 3\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{1158}\sqrt{3}}{2\times 3\times 3}
To multiply \sqrt{193} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{3}\sqrt{386}\sqrt{3}}{2\times 3\times 3}
Factor 1158=3\times 386. Rewrite the square root of the product \sqrt{3\times 386} as the product of square roots \sqrt{3}\sqrt{386}.
\frac{3\sqrt{386}}{2\times 3\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{386}}{6\times 3}
Multiply 2 and 3 to get 6.
\frac{3\sqrt{386}}{18}
Multiply 6 and 3 to get 18.
\frac{1}{6}\sqrt{386}
Divide 3\sqrt{386} by 18 to get \frac{1}{6}\sqrt{386}.