Evaluate
2n
Differentiate w.r.t. n
2
Share
Copied to clipboard
\left(\sqrt{m+n}\right)^{2}-\left(\sqrt{m-n}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m+n-\left(\sqrt{m-n}\right)^{2}
Calculate \sqrt{m+n} to the power of 2 and get m+n.
m+n-\left(m-n\right)
Calculate \sqrt{m-n} to the power of 2 and get m-n.
m+n-m-\left(-n\right)
To find the opposite of m-n, find the opposite of each term.
m+n-m+n
The opposite of -n is n.
n+n
Combine m and -m to get 0.
2n
Combine n and n to get 2n.
\frac{\mathrm{d}}{\mathrm{d}n}(\left(\sqrt{m+n}\right)^{2}-\left(\sqrt{m-n}\right)^{2})
Consider \left(\sqrt{m+n}+\sqrt{m-n}\right)\left(\sqrt{m+n}-\sqrt{m-n}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(m+n-\left(\sqrt{m-n}\right)^{2})
Calculate \sqrt{m+n} to the power of 2 and get m+n.
\frac{\mathrm{d}}{\mathrm{d}n}(m+n-\left(m-n\right))
Calculate \sqrt{m-n} to the power of 2 and get m-n.
\frac{\mathrm{d}}{\mathrm{d}n}(m+n-m-\left(-n\right))
To find the opposite of m-n, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}n}(m+n-m+n)
The opposite of -n is n.
\frac{\mathrm{d}}{\mathrm{d}n}(n+n)
Combine m and -m to get 0.
\frac{\mathrm{d}}{\mathrm{d}n}(2n)
Combine n and n to get 2n.
2n^{1-1}
The derivative of ax^{n} is nax^{n-1}.
2n^{0}
Subtract 1 from 1.
2\times 1
For any term t except 0, t^{0}=1.
2
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}