Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)\left(\sqrt{7}+\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{5}\right)^{2}.
\left(7-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)\left(\sqrt{7}+\sqrt{5}\right)^{2}
The square of \sqrt{7} is 7.
\left(7-2\sqrt{35}+\left(\sqrt{5}\right)^{2}\right)\left(\sqrt{7}+\sqrt{5}\right)^{2}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\left(7-2\sqrt{35}+5\right)\left(\sqrt{7}+\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
\left(12-2\sqrt{35}\right)\left(\sqrt{7}+\sqrt{5}\right)^{2}
Add 7 and 5 to get 12.
\left(12-2\sqrt{35}\right)\left(\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\left(12-2\sqrt{35}\right)\left(7+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{7} is 7.
\left(12-2\sqrt{35}\right)\left(7+2\sqrt{35}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\left(12-2\sqrt{35}\right)\left(7+2\sqrt{35}+5\right)
The square of \sqrt{5} is 5.
\left(12-2\sqrt{35}\right)\left(12+2\sqrt{35}\right)
Add 7 and 5 to get 12.
144-\left(2\sqrt{35}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 12.
144-2^{2}\left(\sqrt{35}\right)^{2}
Expand \left(2\sqrt{35}\right)^{2}.
144-4\left(\sqrt{35}\right)^{2}
Calculate 2 to the power of 2 and get 4.
144-4\times 35
The square of \sqrt{35} is 35.
144-140
Multiply 4 and 35 to get 140.
4
Subtract 140 from 144 to get 4.