Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(\sqrt{6}\right)^{2}+\sqrt{6}\sqrt{2}-12\sqrt{2}\sqrt{6}-4\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{6}-4\sqrt{2} by each term of 3\sqrt{6}+\sqrt{2}.
3\times 6+\sqrt{6}\sqrt{2}-12\sqrt{2}\sqrt{6}-4\left(\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
18+\sqrt{6}\sqrt{2}-12\sqrt{2}\sqrt{6}-4\left(\sqrt{2}\right)^{2}
Multiply 3 and 6 to get 18.
18+\sqrt{2}\sqrt{3}\sqrt{2}-12\sqrt{2}\sqrt{6}-4\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
18+2\sqrt{3}-12\sqrt{2}\sqrt{6}-4\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
18+2\sqrt{3}-12\sqrt{2}\sqrt{2}\sqrt{3}-4\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
18+2\sqrt{3}-12\times 2\sqrt{3}-4\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
18+2\sqrt{3}-24\sqrt{3}-4\left(\sqrt{2}\right)^{2}
Multiply -12 and 2 to get -24.
18-22\sqrt{3}-4\left(\sqrt{2}\right)^{2}
Combine 2\sqrt{3} and -24\sqrt{3} to get -22\sqrt{3}.
18-22\sqrt{3}-4\times 2
The square of \sqrt{2} is 2.
18-22\sqrt{3}-8
Multiply -4 and 2 to get -8.
10-22\sqrt{3}
Subtract 8 from 18 to get 10.