Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(9+6\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{3}\right)^{2}.
\left(6-2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(9+6\sqrt{2}\right)
The square of \sqrt{6} is 6.
\left(6-2\sqrt{3}\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(9+6\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\left(6-2\times 3\sqrt{2}+\left(\sqrt{3}\right)^{2}\right)\left(9+6\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(6-6\sqrt{2}+\left(\sqrt{3}\right)^{2}\right)\left(9+6\sqrt{2}\right)
Multiply -2 and 3 to get -6.
\left(6-6\sqrt{2}+3\right)\left(9+6\sqrt{2}\right)
The square of \sqrt{3} is 3.
\left(9-6\sqrt{2}\right)\left(9+6\sqrt{2}\right)
Add 6 and 3 to get 9.
81-\left(6\sqrt{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 9.
81-6^{2}\left(\sqrt{2}\right)^{2}
Expand \left(6\sqrt{2}\right)^{2}.
81-36\left(\sqrt{2}\right)^{2}
Calculate 6 to the power of 2 and get 36.
81-36\times 2
The square of \sqrt{2} is 2.
81-72
Multiply 36 and 2 to get 72.
9
Subtract 72 from 81 to get 9.