Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
The square of \sqrt{6} is 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Multiply -2 and 2 to get -4.
6-4\sqrt{3}+2+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
8-4\sqrt{3}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Add 6 and 2 to get 8.
8-4\sqrt{3}+\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(\sqrt{6}-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
8-4\sqrt{3}+\left(4+4\sqrt{3}+3\right)\left(\sqrt{6}-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{3}\right)^{2}.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{6} is 6.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-2\sqrt{3}\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-2\times 3\sqrt{2}+\left(\sqrt{3}\right)^{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-6\sqrt{2}+\left(\sqrt{3}\right)^{2}\right)
Multiply -2 and 3 to get -6.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-6\sqrt{2}+3\right)
The square of \sqrt{3} is 3.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(9-6\sqrt{2}\right)
Add 6 and 3 to get 9.
8-4\sqrt{3}+63-42\sqrt{2}+36\sqrt{3}-24\sqrt{3}\sqrt{2}
Use the distributive property to multiply 7+4\sqrt{3} by 9-6\sqrt{2}.
8-4\sqrt{3}+63-42\sqrt{2}+36\sqrt{3}-24\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
71-4\sqrt{3}-42\sqrt{2}+36\sqrt{3}-24\sqrt{6}
Add 8 and 63 to get 71.
71+32\sqrt{3}-42\sqrt{2}-24\sqrt{6}
Combine -4\sqrt{3} and 36\sqrt{3} to get 32\sqrt{3}.
\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
The square of \sqrt{6} is 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Multiply -2 and 2 to get -4.
6-4\sqrt{3}+2+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
8-4\sqrt{3}+\left(2+\sqrt{3}\right)^{2}\left(\sqrt{6}-\sqrt{3}\right)^{2}
Add 6 and 2 to get 8.
8-4\sqrt{3}+\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(\sqrt{6}-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
8-4\sqrt{3}+\left(4+4\sqrt{3}+3\right)\left(\sqrt{6}-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{3}\right)^{2}.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{6} is 6.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-2\sqrt{3}\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-2\times 3\sqrt{2}+\left(\sqrt{3}\right)^{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-6\sqrt{2}+\left(\sqrt{3}\right)^{2}\right)
Multiply -2 and 3 to get -6.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(6-6\sqrt{2}+3\right)
The square of \sqrt{3} is 3.
8-4\sqrt{3}+\left(7+4\sqrt{3}\right)\left(9-6\sqrt{2}\right)
Add 6 and 3 to get 9.
8-4\sqrt{3}+63-42\sqrt{2}+36\sqrt{3}-24\sqrt{3}\sqrt{2}
Use the distributive property to multiply 7+4\sqrt{3} by 9-6\sqrt{2}.
8-4\sqrt{3}+63-42\sqrt{2}+36\sqrt{3}-24\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
71-4\sqrt{3}-42\sqrt{2}+36\sqrt{3}-24\sqrt{6}
Add 8 and 63 to get 71.
71+32\sqrt{3}-42\sqrt{2}-24\sqrt{6}
Combine -4\sqrt{3} and 36\sqrt{3} to get 32\sqrt{3}.