Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
6-4\sqrt{3}+2
The square of \sqrt{2} is 2.
8-4\sqrt{3}
Add 6 and 2 to get 8.
\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
6-4\sqrt{3}+2
The square of \sqrt{2} is 2.
8-4\sqrt{3}
Add 6 and 2 to get 8.