Evaluate
15\sqrt{6}\approx 36.742346142
Share
Copied to clipboard
\left(\sqrt{6}-\frac{\sqrt{3}}{\sqrt{8}}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
Rewrite the square root of the division \sqrt{\frac{3}{8}} as the division of square roots \frac{\sqrt{3}}{\sqrt{8}}.
\left(\sqrt{6}-\frac{\sqrt{3}}{2\sqrt{2}}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(\sqrt{6}-\frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\sqrt{6}-\frac{\sqrt{3}\sqrt{2}}{2\times 2}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(\sqrt{6}-\frac{\sqrt{6}}{2\times 2}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(\sqrt{6}-\frac{\sqrt{6}}{4}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
Multiply 2 and 2 to get 4.
\left(\frac{4\sqrt{6}}{4}-\frac{\sqrt{6}}{4}\right)\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{4}{4}.
\frac{4\sqrt{6}-\sqrt{6}}{4}\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
Since \frac{4\sqrt{6}}{4} and \frac{\sqrt{6}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{3\sqrt{6}}{4}\sqrt{2}\times 2\left(\sqrt{32}+\sqrt{2}\right)
Do the calculations in 4\sqrt{6}-\sqrt{6}.
\frac{3\sqrt{6}}{4}\sqrt{2}\times 2\left(4\sqrt{2}+\sqrt{2}\right)
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{3\sqrt{6}}{4}\sqrt{2}\times 2\times 5\sqrt{2}
Combine 4\sqrt{2} and \sqrt{2} to get 5\sqrt{2}.
\frac{3\sqrt{6}}{4}\sqrt{2}\times 10\sqrt{2}
Multiply 2 and 5 to get 10.
\frac{3\sqrt{6}}{4}\times 2\times 10
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{3\sqrt{6}}{2}\times 10
Cancel out 4, the greatest common factor in 2 and 4.
5\times 3\sqrt{6}
Cancel out 2, the greatest common factor in 10 and 2.
15\sqrt{6}
Multiply 5 and 3 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}