Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

5-2t+t^{2}+\left(2\sqrt{13}\right)^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Calculate \sqrt{5-2t+t^{2}} to the power of 2 and get 5-2t+t^{2}.
5-2t+t^{2}+2^{2}\left(\sqrt{13}\right)^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Expand \left(2\sqrt{13}\right)^{2}.
5-2t+t^{2}+4\left(\sqrt{13}\right)^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
5-2t+t^{2}+4\times 13=\left(\sqrt{25+6t+t^{2}}\right)^{2}
The square of \sqrt{13} is 13.
5-2t+t^{2}+52=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Multiply 4 and 13 to get 52.
57-2t+t^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Add 5 and 52 to get 57.
57-2t+t^{2}=25+6t+t^{2}
Calculate \sqrt{25+6t+t^{2}} to the power of 2 and get 25+6t+t^{2}.
57-2t+t^{2}-6t=25+t^{2}
Subtract 6t from both sides.
57-8t+t^{2}=25+t^{2}
Combine -2t and -6t to get -8t.
57-8t+t^{2}-t^{2}=25
Subtract t^{2} from both sides.
57-8t=25
Combine t^{2} and -t^{2} to get 0.
-8t=25-57
Subtract 57 from both sides.
-8t=-32
Subtract 57 from 25 to get -32.
t=\frac{-32}{-8}
Divide both sides by -8.
t=4
Divide -32 by -8 to get 4.