Solve for t
t=4
Share
Copied to clipboard
5-2t+t^{2}+\left(2\sqrt{13}\right)^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Calculate \sqrt{5-2t+t^{2}} to the power of 2 and get 5-2t+t^{2}.
5-2t+t^{2}+2^{2}\left(\sqrt{13}\right)^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Expand \left(2\sqrt{13}\right)^{2}.
5-2t+t^{2}+4\left(\sqrt{13}\right)^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
5-2t+t^{2}+4\times 13=\left(\sqrt{25+6t+t^{2}}\right)^{2}
The square of \sqrt{13} is 13.
5-2t+t^{2}+52=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Multiply 4 and 13 to get 52.
57-2t+t^{2}=\left(\sqrt{25+6t+t^{2}}\right)^{2}
Add 5 and 52 to get 57.
57-2t+t^{2}=25+6t+t^{2}
Calculate \sqrt{25+6t+t^{2}} to the power of 2 and get 25+6t+t^{2}.
57-2t+t^{2}-6t=25+t^{2}
Subtract 6t from both sides.
57-8t+t^{2}=25+t^{2}
Combine -2t and -6t to get -8t.
57-8t+t^{2}-t^{2}=25
Subtract t^{2} from both sides.
57-8t=25
Combine t^{2} and -t^{2} to get 0.
-8t=25-57
Subtract 57 from both sides.
-8t=-32
Subtract 57 from 25 to get -32.
t=\frac{-32}{-8}
Divide both sides by -8.
t=4
Divide -32 by -8 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}