Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}\left(-a\right)-\left(\sqrt{5}\right)^{2}-a\left(-a\right)+a\sqrt{5}
Apply the distributive property by multiplying each term of \sqrt{5}-a by each term of -a-\sqrt{5}.
\sqrt{5}\left(-a\right)-5-a\left(-a\right)+a\sqrt{5}
The square of \sqrt{5} is 5.
\sqrt{5}\left(-a\right)-5+aa+a\sqrt{5}
Multiply -1 and -1 to get 1.
\sqrt{5}\left(-a\right)-5+a^{2}+a\sqrt{5}
Multiply a and a to get a^{2}.
-5+a^{2}
Combine \sqrt{5}\left(-1\right)a and a\sqrt{5} to get 0.
\frac{\mathrm{d}}{\mathrm{d}a}(\sqrt{5}\left(-a\right)-\left(\sqrt{5}\right)^{2}-a\left(-a\right)+a\sqrt{5})
Apply the distributive property by multiplying each term of \sqrt{5}-a by each term of -a-\sqrt{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(\sqrt{5}\left(-a\right)-5-a\left(-a\right)+a\sqrt{5})
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}a}(\sqrt{5}\left(-a\right)-5+aa+a\sqrt{5})
Multiply -1 and -1 to get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\sqrt{5}\left(-a\right)-5+a^{2}+a\sqrt{5})
Multiply a and a to get a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(-5+a^{2})
Combine \sqrt{5}\left(-1\right)a and a\sqrt{5} to get 0.
2a^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
2a^{1}
Subtract 1 from 2.
2a
For any term t, t^{1}=t.