Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-6\sqrt{5}+9+\left(\sqrt{11}+3\right)\left(\sqrt{11}-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-3\right)^{2}.
5-6\sqrt{5}+9+\left(\sqrt{11}+3\right)\left(\sqrt{11}-3\right)
The square of \sqrt{5} is 5.
14-6\sqrt{5}+\left(\sqrt{11}+3\right)\left(\sqrt{11}-3\right)
Add 5 and 9 to get 14.
14-6\sqrt{5}+\left(\sqrt{11}\right)^{2}-9
Consider \left(\sqrt{11}+3\right)\left(\sqrt{11}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
14-6\sqrt{5}+11-9
The square of \sqrt{11} is 11.
14-6\sqrt{5}+2
Subtract 9 from 11 to get 2.
16-6\sqrt{5}
Add 14 and 2 to get 16.