Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{2}\right)^{2}.
5-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)
The square of \sqrt{5} is 5.
5-2\sqrt{10}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5-2\sqrt{10}+2+\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)
The square of \sqrt{2} is 2.
7-2\sqrt{10}+\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)
Add 5 and 2 to get 7.
7-2\sqrt{10}+\left(\sqrt{5}\right)^{2}-9
Consider \left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
7-2\sqrt{10}+5-9
The square of \sqrt{5} is 5.
7-2\sqrt{10}-4
Subtract 9 from 5 to get -4.
3-2\sqrt{10}
Subtract 4 from 7 to get 3.