Evaluate
17-5\sqrt{10}\approx 1.188611699
Share
Copied to clipboard
\left(\sqrt{5}-3\sqrt{2}\right)\left(\sqrt{5}-2\sqrt{2}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}+6\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{5}-3\sqrt{2} by each term of \sqrt{5}-2\sqrt{2}.
5-2\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}+6\left(\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5-2\sqrt{10}-3\sqrt{2}\sqrt{5}+6\left(\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5-2\sqrt{10}-3\sqrt{10}+6\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
5-5\sqrt{10}+6\left(\sqrt{2}\right)^{2}
Combine -2\sqrt{10} and -3\sqrt{10} to get -5\sqrt{10}.
5-5\sqrt{10}+6\times 2
The square of \sqrt{2} is 2.
5-5\sqrt{10}+12
Multiply 6 and 2 to get 12.
17-5\sqrt{10}
Add 5 and 12 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}