Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{6}-\sqrt{5}\sqrt{7}+\sqrt{6}\sqrt{5}+\left(\sqrt{6}\right)^{2}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
Apply the distributive property by multiplying each term of \sqrt{5}+\sqrt{6}+\sqrt{7} by each term of \sqrt{5}+\sqrt{6}-\sqrt{7}.
\left(5+\sqrt{5}\sqrt{6}-\sqrt{5}\sqrt{7}+\sqrt{6}\sqrt{5}+\left(\sqrt{6}\right)^{2}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
The square of \sqrt{5} is 5.
\left(5+\sqrt{30}-\sqrt{5}\sqrt{7}+\sqrt{6}\sqrt{5}+\left(\sqrt{6}\right)^{2}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\left(5+\sqrt{30}-\sqrt{35}+\sqrt{6}\sqrt{5}+\left(\sqrt{6}\right)^{2}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\left(5+\sqrt{30}-\sqrt{35}+\sqrt{30}+\left(\sqrt{6}\right)^{2}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\left(5+2\sqrt{30}-\sqrt{35}+\left(\sqrt{6}\right)^{2}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
Combine \sqrt{30} and \sqrt{30} to get 2\sqrt{30}.
\left(5+2\sqrt{30}-\sqrt{35}+6-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
The square of \sqrt{6} is 6.
\left(11+2\sqrt{30}-\sqrt{35}-\sqrt{6}\sqrt{7}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
Add 5 and 6 to get 11.
\left(11+2\sqrt{30}-\sqrt{35}-\sqrt{42}+\sqrt{7}\sqrt{5}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\left(11+2\sqrt{30}-\sqrt{35}-\sqrt{42}+\sqrt{35}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\left(11+2\sqrt{30}-\sqrt{42}+\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
Combine -\sqrt{35} and \sqrt{35} to get 0.
\left(11+2\sqrt{30}-\sqrt{42}+\sqrt{42}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
\left(11+2\sqrt{30}-\left(\sqrt{7}\right)^{2}\right)\left(\sqrt{5}-\sqrt{6}\right)
Combine -\sqrt{42} and \sqrt{42} to get 0.
\left(11+2\sqrt{30}-7\right)\left(\sqrt{5}-\sqrt{6}\right)
The square of \sqrt{7} is 7.
\left(4+2\sqrt{30}\right)\left(\sqrt{5}-\sqrt{6}\right)
Subtract 7 from 11 to get 4.
4\sqrt{5}-4\sqrt{6}+2\sqrt{30}\sqrt{5}-2\sqrt{6}\sqrt{30}
Apply the distributive property by multiplying each term of 4+2\sqrt{30} by each term of \sqrt{5}-\sqrt{6}.
4\sqrt{5}-4\sqrt{6}+2\sqrt{5}\sqrt{6}\sqrt{5}-2\sqrt{6}\sqrt{30}
Factor 30=5\times 6. Rewrite the square root of the product \sqrt{5\times 6} as the product of square roots \sqrt{5}\sqrt{6}.
4\sqrt{5}-4\sqrt{6}+2\times 5\sqrt{6}-2\sqrt{6}\sqrt{30}
Multiply \sqrt{5} and \sqrt{5} to get 5.
4\sqrt{5}-4\sqrt{6}+10\sqrt{6}-2\sqrt{6}\sqrt{30}
Multiply 2 and 5 to get 10.
4\sqrt{5}+6\sqrt{6}-2\sqrt{6}\sqrt{30}
Combine -4\sqrt{6} and 10\sqrt{6} to get 6\sqrt{6}.
4\sqrt{5}+6\sqrt{6}-2\sqrt{6}\sqrt{6}\sqrt{5}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
4\sqrt{5}+6\sqrt{6}-2\times 6\sqrt{5}
Multiply \sqrt{6} and \sqrt{6} to get 6.
4\sqrt{5}+6\sqrt{6}-12\sqrt{5}
Multiply -2 and 6 to get -12.
-8\sqrt{5}+6\sqrt{6}
Combine 4\sqrt{5} and -12\sqrt{5} to get -8\sqrt{5}.