Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\sqrt{3}+\sqrt{6}}{\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\left(4\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{3}+\sqrt{6}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(4\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{4\left(\sqrt{3}\right)^{2}+\sqrt{6}\sqrt{3}}{3}
Use the distributive property to multiply 4\sqrt{3}+\sqrt{6} by \sqrt{3}.
\frac{4\times 3+\sqrt{6}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{12+\sqrt{6}\sqrt{3}}{3}
Multiply 4 and 3 to get 12.
\frac{12+\sqrt{3}\sqrt{2}\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{12+3\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
4+\sqrt{2}
Divide each term of 12+3\sqrt{2} by 3 to get 4+\sqrt{2}.