Solve for x (complex solution)
x=-\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt[4]{3}i}{2}\approx -0-0.681250039i
x=\frac{\left(\sqrt{6}-\sqrt{2}\right)\sqrt[4]{3}i}{2}\approx 0.681250039i
Graph
Share
Copied to clipboard
\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1=x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1=x^{2}+1
The square of \sqrt{3} is 3.
4-2\sqrt{3}=x^{2}+1
Add 3 and 1 to get 4.
x^{2}+1=4-2\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}=4-2\sqrt{3}-1
Subtract 1 from both sides.
x^{2}=3-2\sqrt{3}
Subtract 1 from 4 to get 3.
x=\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2} x=-\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
The equation is now solved.
\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1=x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1=x^{2}+1
The square of \sqrt{3} is 3.
4-2\sqrt{3}=x^{2}+1
Add 3 and 1 to get 4.
x^{2}+1=4-2\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}+1-4=-2\sqrt{3}
Subtract 4 from both sides.
x^{2}-3=-2\sqrt{3}
Subtract 4 from 1 to get -3.
x^{2}-3+2\sqrt{3}=0
Add 2\sqrt{3} to both sides.
x^{2}+2\sqrt{3}-3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(2\sqrt{3}-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -3+2\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(2\sqrt{3}-3\right)}}{2}
Square 0.
x=\frac{0±\sqrt{12-8\sqrt{3}}}{2}
Multiply -4 times -3+2\sqrt{3}.
x=\frac{0±2\sqrt[4]{3}\times \frac{\sqrt{6}i-\sqrt{2}i}{2}}{2}
Take the square root of 12-8\sqrt{3}.
x=\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
Now solve the equation x=\frac{0±2\sqrt[4]{3}\times \frac{\sqrt{6}i-\sqrt{2}i}{2}}{2} when ± is plus.
x=-\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
Now solve the equation x=\frac{0±2\sqrt[4]{3}\times \frac{\sqrt{6}i-\sqrt{2}i}{2}}{2} when ± is minus.
x=\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2} x=-\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}