Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1=x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1=x^{2}+1
The square of \sqrt{3} is 3.
4-2\sqrt{3}=x^{2}+1
Add 3 and 1 to get 4.
x^{2}+1=4-2\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}=4-2\sqrt{3}-1
Subtract 1 from both sides.
x^{2}=3-2\sqrt{3}
Subtract 1 from 4 to get 3.
x=\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2} x=-\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
The equation is now solved.
\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1=x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1=x^{2}+1
The square of \sqrt{3} is 3.
4-2\sqrt{3}=x^{2}+1
Add 3 and 1 to get 4.
x^{2}+1=4-2\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}+1-4=-2\sqrt{3}
Subtract 4 from both sides.
x^{2}-3=-2\sqrt{3}
Subtract 4 from 1 to get -3.
x^{2}-3+2\sqrt{3}=0
Add 2\sqrt{3} to both sides.
x^{2}+2\sqrt{3}-3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(2\sqrt{3}-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -3+2\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(2\sqrt{3}-3\right)}}{2}
Square 0.
x=\frac{0±\sqrt{12-8\sqrt{3}}}{2}
Multiply -4 times -3+2\sqrt{3}.
x=\frac{0±2\sqrt[4]{3}\times \frac{\sqrt{6}i-\sqrt{2}i}{2}}{2}
Take the square root of 12-8\sqrt{3}.
x=\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
Now solve the equation x=\frac{0±2\sqrt[4]{3}\times \frac{\sqrt{6}i-\sqrt{2}i}{2}}{2} when ± is plus.
x=-\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
Now solve the equation x=\frac{0±2\sqrt[4]{3}\times \frac{\sqrt{6}i-\sqrt{2}i}{2}}{2} when ± is minus.
x=\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2} x=-\frac{\sqrt[4]{3}\left(\sqrt{6}i-\sqrt{2}i\right)}{2}
The equation is now solved.