Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{3}\sqrt{6}+\sqrt{3}\sqrt{7}-3\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{3}-\sqrt{7} by each term of 3\sqrt{6}+\sqrt{7}.
3\sqrt{3}\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{7}-3\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\times 3\sqrt{2}+\sqrt{3}\sqrt{7}-3\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
9\sqrt{2}+\sqrt{3}\sqrt{7}-3\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}
Multiply 3 and 3 to get 9.
9\sqrt{2}+\sqrt{21}-3\sqrt{7}\sqrt{6}-\left(\sqrt{7}\right)^{2}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
9\sqrt{2}+\sqrt{21}-3\sqrt{42}-\left(\sqrt{7}\right)^{2}
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
9\sqrt{2}+\sqrt{21}-3\sqrt{42}-7
The square of \sqrt{7} is 7.