Evaluate
-6\sqrt{2}-9\approx -17.485281374
Share
Copied to clipboard
\left(\sqrt{3}\right)^{2}-3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}+3\sqrt{2}\sqrt{3}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{3}+3\sqrt{2}-\sqrt{6} by each term of \sqrt{3}-3\sqrt{2}-\sqrt{6}.
3-3\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}+3\sqrt{2}\sqrt{3}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
3-3\sqrt{6}-\sqrt{3}\sqrt{6}+3\sqrt{2}\sqrt{3}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
3-3\sqrt{6}-\sqrt{3}\sqrt{3}\sqrt{2}+3\sqrt{2}\sqrt{3}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3-3\sqrt{6}-3\sqrt{2}+3\sqrt{2}\sqrt{3}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3-3\sqrt{6}-3\sqrt{2}+3\sqrt{6}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3-3\sqrt{2}-9\left(\sqrt{2}\right)^{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Combine -3\sqrt{6} and 3\sqrt{6} to get 0.
3-3\sqrt{2}-9\times 2-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
3-3\sqrt{2}-18-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Multiply -9 and 2 to get -18.
-15-3\sqrt{2}-3\sqrt{2}\sqrt{6}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Subtract 18 from 3 to get -15.
-15-3\sqrt{2}-3\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-15-3\sqrt{2}-3\times 2\sqrt{3}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-15-3\sqrt{2}-6\sqrt{3}-\sqrt{6}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Multiply -3 and 2 to get -6.
-15-3\sqrt{2}-6\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-15-3\sqrt{2}-6\sqrt{3}-3\sqrt{2}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-15-6\sqrt{2}-6\sqrt{3}+3\sqrt{6}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Combine -3\sqrt{2} and -3\sqrt{2} to get -6\sqrt{2}.
-15-6\sqrt{2}-6\sqrt{3}+3\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-15-6\sqrt{2}-6\sqrt{3}+3\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-15-6\sqrt{2}-6\sqrt{3}+6\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply 3 and 2 to get 6.
-15-6\sqrt{2}+\left(\sqrt{6}\right)^{2}
Combine -6\sqrt{3} and 6\sqrt{3} to get 0.
-15-6\sqrt{2}+6
The square of \sqrt{6} is 6.
-9-6\sqrt{2}
Add -15 and 6 to get -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}