Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}+27\right)\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{7}\right)^{2}.
\left(\sqrt{3}+27\right)\left(3+2\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}\right)
The square of \sqrt{3} is 3.
\left(\sqrt{3}+27\right)\left(3+2\sqrt{21}+\left(\sqrt{7}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\left(\sqrt{3}+27\right)\left(3+2\sqrt{21}+7\right)
The square of \sqrt{7} is 7.
\left(\sqrt{3}+27\right)\left(10+2\sqrt{21}\right)
Add 3 and 7 to get 10.
10\sqrt{3}+2\sqrt{3}\sqrt{21}+270+54\sqrt{21}
Use the distributive property to multiply \sqrt{3}+27 by 10+2\sqrt{21}.
10\sqrt{3}+2\sqrt{3}\sqrt{3}\sqrt{7}+270+54\sqrt{21}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
10\sqrt{3}+2\times 3\sqrt{7}+270+54\sqrt{21}
Multiply \sqrt{3} and \sqrt{3} to get 3.
10\sqrt{3}+6\sqrt{7}+270+54\sqrt{21}
Multiply 2 and 3 to get 6.