Solve for a
a=-\frac{10b+6\sqrt{5}+11}{\sqrt{5}b+3}
b\neq -\frac{3\sqrt{5}}{5}
Solve for b
b=-\frac{3a+6\sqrt{5}+11}{\sqrt{5}a+10}
a\neq -2\sqrt{5}
Share
Copied to clipboard
\left(2\sqrt{5}+a\right)\left(b\sqrt{5}+3\right)=-11
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2b\left(\sqrt{5}\right)^{2}+6\sqrt{5}+ab\sqrt{5}+3a=-11
Use the distributive property to multiply 2\sqrt{5}+a by b\sqrt{5}+3.
2b\times 5+6\sqrt{5}+ab\sqrt{5}+3a=-11
The square of \sqrt{5} is 5.
10b+6\sqrt{5}+ab\sqrt{5}+3a=-11
Multiply 2 and 5 to get 10.
6\sqrt{5}+ab\sqrt{5}+3a=-11-10b
Subtract 10b from both sides.
ab\sqrt{5}+3a=-11-10b-6\sqrt{5}
Subtract 6\sqrt{5} from both sides.
\left(b\sqrt{5}+3\right)a=-11-10b-6\sqrt{5}
Combine all terms containing a.
\left(\sqrt{5}b+3\right)a=-10b-6\sqrt{5}-11
The equation is in standard form.
\frac{\left(\sqrt{5}b+3\right)a}{\sqrt{5}b+3}=\frac{-10b-6\sqrt{5}-11}{\sqrt{5}b+3}
Divide both sides by b\sqrt{5}+3.
a=\frac{-10b-6\sqrt{5}-11}{\sqrt{5}b+3}
Dividing by b\sqrt{5}+3 undoes the multiplication by b\sqrt{5}+3.
a=-\frac{10b+6\sqrt{5}+11}{\sqrt{5}b+3}
Divide -11-10b-6\sqrt{5} by b\sqrt{5}+3.
\left(2\sqrt{5}+a\right)\left(b\sqrt{5}+3\right)=-11
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2b\left(\sqrt{5}\right)^{2}+6\sqrt{5}+ab\sqrt{5}+3a=-11
Use the distributive property to multiply 2\sqrt{5}+a by b\sqrt{5}+3.
2b\times 5+6\sqrt{5}+ab\sqrt{5}+3a=-11
The square of \sqrt{5} is 5.
10b+6\sqrt{5}+ab\sqrt{5}+3a=-11
Multiply 2 and 5 to get 10.
10b+ab\sqrt{5}+3a=-11-6\sqrt{5}
Subtract 6\sqrt{5} from both sides.
10b+ab\sqrt{5}=-11-6\sqrt{5}-3a
Subtract 3a from both sides.
\left(10+a\sqrt{5}\right)b=-11-6\sqrt{5}-3a
Combine all terms containing b.
\left(\sqrt{5}a+10\right)b=-3a-6\sqrt{5}-11
The equation is in standard form.
\frac{\left(\sqrt{5}a+10\right)b}{\sqrt{5}a+10}=\frac{-3a-6\sqrt{5}-11}{\sqrt{5}a+10}
Divide both sides by 10+a\sqrt{5}.
b=\frac{-3a-6\sqrt{5}-11}{\sqrt{5}a+10}
Dividing by 10+a\sqrt{5} undoes the multiplication by 10+a\sqrt{5}.
b=-\frac{3a+6\sqrt{5}+11}{\sqrt{5}a+10}
Divide -11-6\sqrt{5}-3a by 10+a\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}