Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{5}+a\right)\left(b\sqrt{5}+3\right)=-11
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2b\left(\sqrt{5}\right)^{2}+6\sqrt{5}+ab\sqrt{5}+3a=-11
Use the distributive property to multiply 2\sqrt{5}+a by b\sqrt{5}+3.
2b\times 5+6\sqrt{5}+ab\sqrt{5}+3a=-11
The square of \sqrt{5} is 5.
10b+6\sqrt{5}+ab\sqrt{5}+3a=-11
Multiply 2 and 5 to get 10.
6\sqrt{5}+ab\sqrt{5}+3a=-11-10b
Subtract 10b from both sides.
ab\sqrt{5}+3a=-11-10b-6\sqrt{5}
Subtract 6\sqrt{5} from both sides.
\left(b\sqrt{5}+3\right)a=-11-10b-6\sqrt{5}
Combine all terms containing a.
\left(\sqrt{5}b+3\right)a=-10b-6\sqrt{5}-11
The equation is in standard form.
\frac{\left(\sqrt{5}b+3\right)a}{\sqrt{5}b+3}=\frac{-10b-6\sqrt{5}-11}{\sqrt{5}b+3}
Divide both sides by b\sqrt{5}+3.
a=\frac{-10b-6\sqrt{5}-11}{\sqrt{5}b+3}
Dividing by b\sqrt{5}+3 undoes the multiplication by b\sqrt{5}+3.
a=-\frac{10b+6\sqrt{5}+11}{\sqrt{5}b+3}
Divide -11-10b-6\sqrt{5} by b\sqrt{5}+3.
\left(2\sqrt{5}+a\right)\left(b\sqrt{5}+3\right)=-11
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2b\left(\sqrt{5}\right)^{2}+6\sqrt{5}+ab\sqrt{5}+3a=-11
Use the distributive property to multiply 2\sqrt{5}+a by b\sqrt{5}+3.
2b\times 5+6\sqrt{5}+ab\sqrt{5}+3a=-11
The square of \sqrt{5} is 5.
10b+6\sqrt{5}+ab\sqrt{5}+3a=-11
Multiply 2 and 5 to get 10.
10b+ab\sqrt{5}+3a=-11-6\sqrt{5}
Subtract 6\sqrt{5} from both sides.
10b+ab\sqrt{5}=-11-6\sqrt{5}-3a
Subtract 3a from both sides.
\left(10+a\sqrt{5}\right)b=-11-6\sqrt{5}-3a
Combine all terms containing b.
\left(\sqrt{5}a+10\right)b=-3a-6\sqrt{5}-11
The equation is in standard form.
\frac{\left(\sqrt{5}a+10\right)b}{\sqrt{5}a+10}=\frac{-3a-6\sqrt{5}-11}{\sqrt{5}a+10}
Divide both sides by 10+a\sqrt{5}.
b=\frac{-3a-6\sqrt{5}-11}{\sqrt{5}a+10}
Dividing by 10+a\sqrt{5} undoes the multiplication by 10+a\sqrt{5}.
b=-\frac{3a+6\sqrt{5}+11}{\sqrt{5}a+10}
Divide -11-6\sqrt{5}-3a by 10+a\sqrt{5}.