Evaluate
6-7\sqrt{3}\approx -6.124355653
Share
Copied to clipboard
\left(\sqrt{2}-\sqrt{6}\right)\times 3\sqrt{2}-3\sqrt{\frac{1}{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(3\sqrt{2}-3\sqrt{6}\right)\sqrt{2}-3\sqrt{\frac{1}{3}}
Use the distributive property to multiply \sqrt{2}-\sqrt{6} by 3.
3\left(\sqrt{2}\right)^{2}-3\sqrt{6}\sqrt{2}-3\sqrt{\frac{1}{3}}
Use the distributive property to multiply 3\sqrt{2}-3\sqrt{6} by \sqrt{2}.
3\times 2-3\sqrt{6}\sqrt{2}-3\sqrt{\frac{1}{3}}
The square of \sqrt{2} is 2.
6-3\sqrt{6}\sqrt{2}-3\sqrt{\frac{1}{3}}
Multiply 3 and 2 to get 6.
6-3\sqrt{2}\sqrt{3}\sqrt{2}-3\sqrt{\frac{1}{3}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-3\times 2\sqrt{3}-3\sqrt{\frac{1}{3}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-6\sqrt{3}-3\sqrt{\frac{1}{3}}
Multiply -3 and 2 to get -6.
6-6\sqrt{3}-3\times \frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
6-6\sqrt{3}-3\times \frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
6-6\sqrt{3}-3\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
6-6\sqrt{3}-3\times \frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
6-6\sqrt{3}-\sqrt{3}
Cancel out 3 and 3.
6-7\sqrt{3}
Combine -6\sqrt{3} and -\sqrt{3} to get -7\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}