Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{5}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{2}-\sqrt{3}+\sqrt{5} by each term of \sqrt{2}+\sqrt{3}-\sqrt{5}.
2+\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{5}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
2+\sqrt{6}-\sqrt{2}\sqrt{5}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2+\sqrt{6}-\sqrt{10}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2+\sqrt{6}-\sqrt{10}-\sqrt{6}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2-\sqrt{10}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
Combine \sqrt{6} and -\sqrt{6} to get 0.
2-\sqrt{10}-3+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
-1-\sqrt{10}+\sqrt{3}\sqrt{5}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
Subtract 3 from 2 to get -1.
-1-\sqrt{10}+\sqrt{15}+\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-1-\sqrt{10}+\sqrt{15}+\sqrt{10}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-1+\sqrt{15}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}
Combine -\sqrt{10} and \sqrt{10} to get 0.
-1+\sqrt{15}+\sqrt{15}-\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
-1+2\sqrt{15}-\left(\sqrt{5}\right)^{2}
Combine \sqrt{15} and \sqrt{15} to get 2\sqrt{15}.
-1+2\sqrt{15}-5
The square of \sqrt{5} is 5.
-6+2\sqrt{15}
Subtract 5 from -1 to get -6.