Solve for x
x=-4
x=9
Graph
Share
Copied to clipboard
19x+85=\left(x+7\right)^{2}
Calculate \sqrt{19x+85} to the power of 2 and get 19x+85.
19x+85=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
19x+85-x^{2}=14x+49
Subtract x^{2} from both sides.
19x+85-x^{2}-14x=49
Subtract 14x from both sides.
5x+85-x^{2}=49
Combine 19x and -14x to get 5x.
5x+85-x^{2}-49=0
Subtract 49 from both sides.
5x+36-x^{2}=0
Subtract 49 from 85 to get 36.
-x^{2}+5x+36=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=-36=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+36. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=9 b=-4
The solution is the pair that gives sum 5.
\left(-x^{2}+9x\right)+\left(-4x+36\right)
Rewrite -x^{2}+5x+36 as \left(-x^{2}+9x\right)+\left(-4x+36\right).
-x\left(x-9\right)-4\left(x-9\right)
Factor out -x in the first and -4 in the second group.
\left(x-9\right)\left(-x-4\right)
Factor out common term x-9 by using distributive property.
x=9 x=-4
To find equation solutions, solve x-9=0 and -x-4=0.
19x+85=\left(x+7\right)^{2}
Calculate \sqrt{19x+85} to the power of 2 and get 19x+85.
19x+85=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
19x+85-x^{2}=14x+49
Subtract x^{2} from both sides.
19x+85-x^{2}-14x=49
Subtract 14x from both sides.
5x+85-x^{2}=49
Combine 19x and -14x to get 5x.
5x+85-x^{2}-49=0
Subtract 49 from both sides.
5x+36-x^{2}=0
Subtract 49 from 85 to get 36.
-x^{2}+5x+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 36}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 36}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\times 36}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25+144}}{2\left(-1\right)}
Multiply 4 times 36.
x=\frac{-5±\sqrt{169}}{2\left(-1\right)}
Add 25 to 144.
x=\frac{-5±13}{2\left(-1\right)}
Take the square root of 169.
x=\frac{-5±13}{-2}
Multiply 2 times -1.
x=\frac{8}{-2}
Now solve the equation x=\frac{-5±13}{-2} when ± is plus. Add -5 to 13.
x=-4
Divide 8 by -2.
x=-\frac{18}{-2}
Now solve the equation x=\frac{-5±13}{-2} when ± is minus. Subtract 13 from -5.
x=9
Divide -18 by -2.
x=-4 x=9
The equation is now solved.
19x+85=\left(x+7\right)^{2}
Calculate \sqrt{19x+85} to the power of 2 and get 19x+85.
19x+85=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
19x+85-x^{2}=14x+49
Subtract x^{2} from both sides.
19x+85-x^{2}-14x=49
Subtract 14x from both sides.
5x+85-x^{2}=49
Combine 19x and -14x to get 5x.
5x-x^{2}=49-85
Subtract 85 from both sides.
5x-x^{2}=-36
Subtract 85 from 49 to get -36.
-x^{2}+5x=-36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=-\frac{36}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=-\frac{36}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=-\frac{36}{-1}
Divide 5 by -1.
x^{2}-5x=36
Divide -36 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
Add 36 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
Simplify.
x=9 x=-4
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}