Evaluate
6\sqrt{6}+6\approx 20.696938457
Share
Copied to clipboard
2\left(3\sqrt{2}+3\sqrt{3}-2\sqrt{3}\right)\sqrt{3}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
2\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{3}
Combine 3\sqrt{3} and -2\sqrt{3} to get \sqrt{3}.
\left(6\sqrt{2}+2\sqrt{3}\right)\sqrt{3}
Use the distributive property to multiply 2 by 3\sqrt{2}+\sqrt{3}.
6\sqrt{2}\sqrt{3}+2\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply 6\sqrt{2}+2\sqrt{3} by \sqrt{3}.
6\sqrt{6}+2\left(\sqrt{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
6\sqrt{6}+2\times 3
The square of \sqrt{3} is 3.
6\sqrt{6}+6
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}