Evaluate
2\left(\sqrt{5}+9\right)\approx 22.472135955
Share
Copied to clipboard
\frac{3\sqrt{2}+\sqrt{50}}{\sqrt{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}+5\sqrt{2}}{\sqrt{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{8\sqrt{2}}{\sqrt{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Combine 3\sqrt{2} and 5\sqrt{2} to get 8\sqrt{2}.
\frac{8\sqrt{2}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Rationalize the denominator of \frac{8\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{8\sqrt{2}\sqrt{2}}{2}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
The square of \sqrt{2} is 2.
\frac{8\times 2}{2}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{16}{2}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Multiply 8 and 2 to get 16.
8+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Divide 16 by 2 to get 8.
8+\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+1\right)^{2}.
8+5+2\sqrt{5}+1+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
The square of \sqrt{5} is 5.
8+6+2\sqrt{5}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Add 5 and 1 to get 6.
14+2\sqrt{5}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Add 8 and 6 to get 14.
14+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-1
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
14+2\sqrt{5}+5-1
The square of \sqrt{5} is 5.
14+2\sqrt{5}+4
Subtract 1 from 5 to get 4.
18+2\sqrt{5}
Add 14 and 4 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}