Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}+\sqrt{50}}{\sqrt{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}+5\sqrt{2}}{\sqrt{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{8\sqrt{2}}{\sqrt{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Combine 3\sqrt{2} and 5\sqrt{2} to get 8\sqrt{2}.
\frac{8\sqrt{2}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Rationalize the denominator of \frac{8\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{8\sqrt{2}\sqrt{2}}{2}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
The square of \sqrt{2} is 2.
\frac{8\times 2}{2}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{16}{2}+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Multiply 8 and 2 to get 16.
8+\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Divide 16 by 2 to get 8.
8+\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+1\right)^{2}.
8+5+2\sqrt{5}+1+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
The square of \sqrt{5} is 5.
8+6+2\sqrt{5}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Add 5 and 1 to get 6.
14+2\sqrt{5}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)
Add 8 and 6 to get 14.
14+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-1
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
14+2\sqrt{5}+5-1
The square of \sqrt{5} is 5.
14+2\sqrt{5}+4
Subtract 1 from 5 to get 4.
18+2\sqrt{5}
Add 14 and 4 to get 18.