Evaluate
21-2\sqrt{141}\approx -2.748684174
Quiz
Arithmetic
5 problems similar to:
( \sqrt { 12 } - \sqrt { 188 } + \sqrt { 75 } ) \cdot \sqrt { 3 }
Share
Copied to clipboard
\left(2\sqrt{3}-\sqrt{188}+\sqrt{75}\right)\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{3}-2\sqrt{47}+\sqrt{75}\right)\sqrt{3}
Factor 188=2^{2}\times 47. Rewrite the square root of the product \sqrt{2^{2}\times 47} as the product of square roots \sqrt{2^{2}}\sqrt{47}. Take the square root of 2^{2}.
\left(2\sqrt{3}-2\sqrt{47}+5\sqrt{3}\right)\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\left(7\sqrt{3}-2\sqrt{47}\right)\sqrt{3}
Combine 2\sqrt{3} and 5\sqrt{3} to get 7\sqrt{3}.
7\left(\sqrt{3}\right)^{2}-2\sqrt{47}\sqrt{3}
Use the distributive property to multiply 7\sqrt{3}-2\sqrt{47} by \sqrt{3}.
7\times 3-2\sqrt{47}\sqrt{3}
The square of \sqrt{3} is 3.
21-2\sqrt{47}\sqrt{3}
Multiply 7 and 3 to get 21.
21-2\sqrt{141}
To multiply \sqrt{47} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}