Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{3}-\sqrt{188}+\sqrt{75}\right)\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{3}-2\sqrt{47}+\sqrt{75}\right)\sqrt{3}
Factor 188=2^{2}\times 47. Rewrite the square root of the product \sqrt{2^{2}\times 47} as the product of square roots \sqrt{2^{2}}\sqrt{47}. Take the square root of 2^{2}.
\left(2\sqrt{3}-2\sqrt{47}+5\sqrt{3}\right)\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\left(7\sqrt{3}-2\sqrt{47}\right)\sqrt{3}
Combine 2\sqrt{3} and 5\sqrt{3} to get 7\sqrt{3}.
7\left(\sqrt{3}\right)^{2}-2\sqrt{47}\sqrt{3}
Use the distributive property to multiply 7\sqrt{3}-2\sqrt{47} by \sqrt{3}.
7\times 3-2\sqrt{47}\sqrt{3}
The square of \sqrt{3} is 3.
21-2\sqrt{47}\sqrt{3}
Multiply 7 and 3 to get 21.
21-2\sqrt{141}
To multiply \sqrt{47} and \sqrt{3}, multiply the numbers under the square root.