Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{3}-\sqrt{16}+\sqrt{13}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}-4+\sqrt{13}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)
Calculate the square root of 16 and get 4.
2\sqrt{3}-4+\left(\sqrt{13}\sqrt{3}+\sqrt{13}\right)\left(\sqrt{3}-1\right)
Use the distributive property to multiply \sqrt{13} by \sqrt{3}+1.
2\sqrt{3}-4+\left(\sqrt{39}+\sqrt{13}\right)\left(\sqrt{3}-1\right)
To multiply \sqrt{13} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-4+\sqrt{39}\sqrt{3}-\sqrt{39}+\sqrt{13}\sqrt{3}-\sqrt{13}
Apply the distributive property by multiplying each term of \sqrt{39}+\sqrt{13} by each term of \sqrt{3}-1.
2\sqrt{3}-4+\sqrt{3}\sqrt{13}\sqrt{3}-\sqrt{39}+\sqrt{13}\sqrt{3}-\sqrt{13}
Factor 39=3\times 13. Rewrite the square root of the product \sqrt{3\times 13} as the product of square roots \sqrt{3}\sqrt{13}.
2\sqrt{3}-4+3\sqrt{13}-\sqrt{39}+\sqrt{13}\sqrt{3}-\sqrt{13}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{3}-4+3\sqrt{13}-\sqrt{39}+\sqrt{39}-\sqrt{13}
To multiply \sqrt{13} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-4+3\sqrt{13}-\sqrt{13}
Combine -\sqrt{39} and \sqrt{39} to get 0.
2\sqrt{3}-4+2\sqrt{13}
Combine 3\sqrt{13} and -\sqrt{13} to get 2\sqrt{13}.