Evaluate
2\left(\sqrt{3}+\sqrt{13}-2\right)\approx 6.675204166
Share
Copied to clipboard
2\sqrt{3}-\sqrt{16}+\sqrt{13}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}-4+\sqrt{13}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)
Calculate the square root of 16 and get 4.
2\sqrt{3}-4+\left(\sqrt{13}\sqrt{3}+\sqrt{13}\right)\left(\sqrt{3}-1\right)
Use the distributive property to multiply \sqrt{13} by \sqrt{3}+1.
2\sqrt{3}-4+\left(\sqrt{39}+\sqrt{13}\right)\left(\sqrt{3}-1\right)
To multiply \sqrt{13} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-4+\sqrt{39}\sqrt{3}-\sqrt{39}+\sqrt{13}\sqrt{3}-\sqrt{13}
Apply the distributive property by multiplying each term of \sqrt{39}+\sqrt{13} by each term of \sqrt{3}-1.
2\sqrt{3}-4+\sqrt{3}\sqrt{13}\sqrt{3}-\sqrt{39}+\sqrt{13}\sqrt{3}-\sqrt{13}
Factor 39=3\times 13. Rewrite the square root of the product \sqrt{3\times 13} as the product of square roots \sqrt{3}\sqrt{13}.
2\sqrt{3}-4+3\sqrt{13}-\sqrt{39}+\sqrt{13}\sqrt{3}-\sqrt{13}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{3}-4+3\sqrt{13}-\sqrt{39}+\sqrt{39}-\sqrt{13}
To multiply \sqrt{13} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-4+3\sqrt{13}-\sqrt{13}
Combine -\sqrt{39} and \sqrt{39} to get 0.
2\sqrt{3}-4+2\sqrt{13}
Combine 3\sqrt{13} and -\sqrt{13} to get 2\sqrt{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}