( \sqrt { 10 } - 3 ) ( \sqrt { 10 } + 3 ) + 1,2 =
Evaluate
2,2
Factor
\frac{11}{5} = 2\frac{1}{5} = 2.2
Share
Copied to clipboard
\left(\sqrt{10}\right)^{2}-3^{2}+1,2
Consider \left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
10-3^{2}+1,2
The square of \sqrt{10} is 10.
10-9+1,2
Calculate 3 to the power of 2 and get 9.
1+1,2
Subtract 9 from 10 to get 1.
2,2
Add 1 and 1,2 to get 2,2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}