Evaluate
-\frac{145\sqrt{3}}{3}+14\approx -69.715789032
Share
Copied to clipboard
\left(\frac{\sqrt{1}}{\sqrt{2}}-6\sqrt{\frac{3}{2}}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\left(\frac{1}{\sqrt{2}}-6\sqrt{\frac{3}{2}}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Calculate the square root of 1 and get 1.
\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-6\sqrt{\frac{3}{2}}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{2}}{2}-6\sqrt{\frac{3}{2}}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{2}}{2}-6\times \frac{\sqrt{3}}{\sqrt{2}}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\left(\frac{\sqrt{2}}{2}-6\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{2}}{2}-6\times \frac{\sqrt{3}\sqrt{2}}{2}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{2}}{2}-6\times \frac{\sqrt{6}}{2}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(\frac{\sqrt{2}}{2}-3\sqrt{6}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Cancel out 2, the greatest common factor in 6 and 2.
\left(\frac{\sqrt{2}}{2}+\frac{2\left(-3\right)\sqrt{6}}{2}\right)\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -3\sqrt{6} times \frac{2}{2}.
\frac{\sqrt{2}+2\left(-3\right)\sqrt{6}}{2}\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Since \frac{\sqrt{2}}{2} and \frac{2\left(-3\right)\sqrt{6}}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(4\sqrt{8}-\sqrt{\frac{2}{3}}\right)
Do the multiplications in \sqrt{2}+2\left(-3\right)\sqrt{6}.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(4\times 2\sqrt{2}-\sqrt{\frac{2}{3}}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(8\sqrt{2}-\sqrt{\frac{2}{3}}\right)
Multiply 4 and 2 to get 8.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(8\sqrt{2}-\frac{\sqrt{2}}{\sqrt{3}}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(8\sqrt{2}-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(8\sqrt{2}-\frac{\sqrt{2}\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(8\sqrt{2}-\frac{\sqrt{6}}{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{2}-6\sqrt{6}}{2}\left(\frac{3\times 8\sqrt{2}}{3}-\frac{\sqrt{6}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 8\sqrt{2} times \frac{3}{3}.
\frac{\sqrt{2}-6\sqrt{6}}{2}\times \frac{3\times 8\sqrt{2}-\sqrt{6}}{3}
Since \frac{3\times 8\sqrt{2}}{3} and \frac{\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{2}-6\sqrt{6}}{2}\times \frac{24\sqrt{2}-\sqrt{6}}{3}
Do the multiplications in 3\times 8\sqrt{2}-\sqrt{6}.
\frac{\left(\sqrt{2}-6\sqrt{6}\right)\left(24\sqrt{2}-\sqrt{6}\right)}{2\times 3}
Multiply \frac{\sqrt{2}-6\sqrt{6}}{2} times \frac{24\sqrt{2}-\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{2}-6\sqrt{6}\right)\left(24\sqrt{2}-\sqrt{6}\right)}{6}
Multiply 2 and 3 to get 6.
\frac{24\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}-144\sqrt{6}\sqrt{2}+6\left(\sqrt{6}\right)^{2}}{6}
Apply the distributive property by multiplying each term of \sqrt{2}-6\sqrt{6} by each term of 24\sqrt{2}-\sqrt{6}.
\frac{24\times 2-\sqrt{2}\sqrt{6}-144\sqrt{6}\sqrt{2}+6\left(\sqrt{6}\right)^{2}}{6}
The square of \sqrt{2} is 2.
\frac{48-\sqrt{2}\sqrt{6}-144\sqrt{6}\sqrt{2}+6\left(\sqrt{6}\right)^{2}}{6}
Multiply 24 and 2 to get 48.
\frac{48-\sqrt{2}\sqrt{2}\sqrt{3}-144\sqrt{6}\sqrt{2}+6\left(\sqrt{6}\right)^{2}}{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{48-2\sqrt{3}-144\sqrt{6}\sqrt{2}+6\left(\sqrt{6}\right)^{2}}{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{48-2\sqrt{3}-144\sqrt{2}\sqrt{3}\sqrt{2}+6\left(\sqrt{6}\right)^{2}}{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{48-2\sqrt{3}-144\times 2\sqrt{3}+6\left(\sqrt{6}\right)^{2}}{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{48-2\sqrt{3}-288\sqrt{3}+6\left(\sqrt{6}\right)^{2}}{6}
Multiply -144 and 2 to get -288.
\frac{48-290\sqrt{3}+6\left(\sqrt{6}\right)^{2}}{6}
Combine -2\sqrt{3} and -288\sqrt{3} to get -290\sqrt{3}.
\frac{48-290\sqrt{3}+6\times 6}{6}
The square of \sqrt{6} is 6.
\frac{48-290\sqrt{3}+36}{6}
Multiply 6 and 6 to get 36.
\frac{84-290\sqrt{3}}{6}
Add 48 and 36 to get 84.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}