Solve for σ
\sigma =\frac{3}{\left(x+\sqrt{3}\right)^{2}}
x\neq -\sqrt{3}
Solve for x (complex solution)
x=-\sqrt{3}+\sqrt{3}\sigma ^{-\frac{1}{2}}
x=-\sqrt{3}-\sqrt{3}\sigma ^{-\frac{1}{2}}\text{, }\sigma \neq 0
Solve for x
x=-\sqrt{3}+\sqrt{\frac{3}{\sigma }}
x=-\sqrt{3}-\sqrt{\frac{3}{\sigma }}\text{, }\sigma >0
Graph
Share
Copied to clipboard
\sigma \left(x^{2}+2x\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\sqrt{3}\right)^{2}.
\sigma \left(x^{2}+2x\sqrt{3}+3\right)-3=0
The square of \sqrt{3} is 3.
\sigma x^{2}+2\sigma x\sqrt{3}+3\sigma -3=0
Use the distributive property to multiply \sigma by x^{2}+2x\sqrt{3}+3.
\sigma x^{2}+2\sigma x\sqrt{3}+3\sigma =3
Add 3 to both sides. Anything plus zero gives itself.
\left(x^{2}+2x\sqrt{3}+3\right)\sigma =3
Combine all terms containing \sigma .
\left(x^{2}+2\sqrt{3}x+3\right)\sigma =3
The equation is in standard form.
\frac{\left(x^{2}+2\sqrt{3}x+3\right)\sigma }{x^{2}+2\sqrt{3}x+3}=\frac{3}{x^{2}+2\sqrt{3}x+3}
Divide both sides by x^{2}+2x\sqrt{3}+3.
\sigma =\frac{3}{x^{2}+2\sqrt{3}x+3}
Dividing by x^{2}+2x\sqrt{3}+3 undoes the multiplication by x^{2}+2x\sqrt{3}+3.
\sigma =\frac{3}{\left(x+\sqrt{3}\right)^{2}}
Divide 3 by x^{2}+2x\sqrt{3}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}