Solve for x
x>\frac{1}{10}
Graph
Share
Copied to clipboard
\frac{5}{3}x+\frac{\frac{15}{4}x}{-\frac{9}{8}}<-\frac{1}{6}
Divide \frac{5}{2}x by \frac{3}{2} to get \frac{5}{3}x.
\frac{5}{3}x-\frac{10}{3}x<-\frac{1}{6}
Divide \frac{15}{4}x by -\frac{9}{8} to get -\frac{10}{3}x.
-\frac{5}{3}x<-\frac{1}{6}
Combine \frac{5}{3}x and -\frac{10}{3}x to get -\frac{5}{3}x.
x>-\frac{1}{6}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}. Since -\frac{5}{3} is negative, the inequality direction is changed.
x>\frac{-\left(-3\right)}{6\times 5}
Multiply -\frac{1}{6} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
x>\frac{3}{30}
Do the multiplications in the fraction \frac{-\left(-3\right)}{6\times 5}.
x>\frac{1}{10}
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}