Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}\times \frac{x^{4}-1}{x^{3}+64}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{2^{2}\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)x^{2}}{2x\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Factor the expressions that are not already factored in \frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}.
\frac{2x\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of -\frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of \frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{\left(2x^{2}+x\sqrt{30}+8x\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x by x+\frac{1}{2}\sqrt{30}+4.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\left(\sqrt{30}\right)^{2}+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x^{2}+x\sqrt{30}+8x by x-\frac{1}{2}\sqrt{30}+4 and combine like terms.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\times 30+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
The square of \sqrt{30} is 30.
\frac{2x^{3}+16x^{2}-15x+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Multiply -\frac{1}{2} and 30 to get -15.
\frac{2x^{3}+16x^{2}+17x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Combine -15x and 32x to get 17x.
\frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply x-1 by x+4 and combine like terms.
\frac{\left(2x^{3}+16x^{2}+17x\right)\left(x^{4}-1\right)}{\left(x^{2}+3x-4\right)\left(x^{3}+64\right)}
Multiply \frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4} times \frac{x^{4}-1}{x^{3}+64} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Factor the expressions that are not already factored.
\frac{2x\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Cancel out x-1 in both numerator and denominator.
\frac{2x^{6}+18x^{5}+35x^{4}+35x^{3}+33x^{2}+17x}{x^{4}+4x^{3}+64x+256}
Expand the expression.
\frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}\times \frac{x^{4}-1}{x^{3}+64}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{2^{2}\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)x^{2}}{2x\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Factor the expressions that are not already factored in \frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}.
\frac{2x\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of -\frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of \frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{\left(2x^{2}+x\sqrt{30}+8x\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x by x+\frac{1}{2}\sqrt{30}+4.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\left(\sqrt{30}\right)^{2}+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x^{2}+x\sqrt{30}+8x by x-\frac{1}{2}\sqrt{30}+4 and combine like terms.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\times 30+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
The square of \sqrt{30} is 30.
\frac{2x^{3}+16x^{2}-15x+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Multiply -\frac{1}{2} and 30 to get -15.
\frac{2x^{3}+16x^{2}+17x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Combine -15x and 32x to get 17x.
\frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply x-1 by x+4 and combine like terms.
\frac{\left(2x^{3}+16x^{2}+17x\right)\left(x^{4}-1\right)}{\left(x^{2}+3x-4\right)\left(x^{3}+64\right)}
Multiply \frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4} times \frac{x^{4}-1}{x^{3}+64} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Factor the expressions that are not already factored.
\frac{2x\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Cancel out x-1 in both numerator and denominator.
\frac{2x^{6}+18x^{5}+35x^{4}+35x^{3}+33x^{2}+17x}{x^{4}+4x^{3}+64x+256}
Expand the expression.