Evaluate
\frac{x\left(x+1\right)\left(x^{2}+1\right)\left(2x^{2}+16x+17\right)}{\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Expand
\frac{2x^{6}+18x^{5}+35x^{4}+35x^{3}+33x^{2}+17x}{\left(x+4\right)\left(x^{3}+64\right)}
Graph
Share
Copied to clipboard
\frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}\times \frac{x^{4}-1}{x^{3}+64}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{2^{2}\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)x^{2}}{2x\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Factor the expressions that are not already factored in \frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}.
\frac{2x\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of -\frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of \frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{\left(2x^{2}+x\sqrt{30}+8x\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x by x+\frac{1}{2}\sqrt{30}+4.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\left(\sqrt{30}\right)^{2}+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x^{2}+x\sqrt{30}+8x by x-\frac{1}{2}\sqrt{30}+4 and combine like terms.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\times 30+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
The square of \sqrt{30} is 30.
\frac{2x^{3}+16x^{2}-15x+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Multiply -\frac{1}{2} and 30 to get -15.
\frac{2x^{3}+16x^{2}+17x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Combine -15x and 32x to get 17x.
\frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply x-1 by x+4 and combine like terms.
\frac{\left(2x^{3}+16x^{2}+17x\right)\left(x^{4}-1\right)}{\left(x^{2}+3x-4\right)\left(x^{3}+64\right)}
Multiply \frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4} times \frac{x^{4}-1}{x^{3}+64} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Factor the expressions that are not already factored.
\frac{2x\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Cancel out x-1 in both numerator and denominator.
\frac{2x^{6}+18x^{5}+35x^{4}+35x^{3}+33x^{2}+17x}{x^{4}+4x^{3}+64x+256}
Expand the expression.
\frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}\times \frac{x^{4}-1}{x^{3}+64}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{2^{2}\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)x^{2}}{2x\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Factor the expressions that are not already factored in \frac{4x^{4}+32x^{3}+34x^{2}}{2x^{3}+6x^{2}-8x}.
\frac{2x\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of -\frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{2x\left(x+\frac{1}{2}\sqrt{30}+4\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
To find the opposite of \frac{1}{2}\sqrt{30}-4, find the opposite of each term.
\frac{\left(2x^{2}+x\sqrt{30}+8x\right)\left(x-\frac{1}{2}\sqrt{30}+4\right)}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x by x+\frac{1}{2}\sqrt{30}+4.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\left(\sqrt{30}\right)^{2}+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply 2x^{2}+x\sqrt{30}+8x by x-\frac{1}{2}\sqrt{30}+4 and combine like terms.
\frac{2x^{3}+16x^{2}-\frac{1}{2}x\times 30+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
The square of \sqrt{30} is 30.
\frac{2x^{3}+16x^{2}-15x+32x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Multiply -\frac{1}{2} and 30 to get -15.
\frac{2x^{3}+16x^{2}+17x}{\left(x-1\right)\left(x+4\right)}\times \frac{x^{4}-1}{x^{3}+64}
Combine -15x and 32x to get 17x.
\frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4}\times \frac{x^{4}-1}{x^{3}+64}
Use the distributive property to multiply x-1 by x+4 and combine like terms.
\frac{\left(2x^{3}+16x^{2}+17x\right)\left(x^{4}-1\right)}{\left(x^{2}+3x-4\right)\left(x^{3}+64\right)}
Multiply \frac{2x^{3}+16x^{2}+17x}{x^{2}+3x-4} times \frac{x^{4}-1}{x^{3}+64} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Factor the expressions that are not already factored.
\frac{2x\left(x+1\right)\left(x-\left(-\frac{1}{2}\sqrt{30}-4\right)\right)\left(x-\left(\frac{1}{2}\sqrt{30}-4\right)\right)\left(x^{2}+1\right)}{\left(x+4\right)^{2}\left(x^{2}-4x+16\right)}
Cancel out x-1 in both numerator and denominator.
\frac{2x^{6}+18x^{5}+35x^{4}+35x^{3}+33x^{2}+17x}{x^{4}+4x^{3}+64x+256}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}