( \frac{ 3 }{ 2 } \sqrt{ \frac{ 5 }{ 3 } } - \sqrt{ \frac{ 5 }{ 4 } }
Evaluate
\frac{\sqrt{15}-\sqrt{5}}{2}\approx 0.818457684
Factor
\frac{\sqrt{15} - \sqrt{5}}{2} = 0.8184576843538136
Share
Copied to clipboard
\frac{3}{2}\times \frac{\sqrt{5}}{\sqrt{3}}-\sqrt{\frac{5}{4}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{3}{2}\times \frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{5}{4}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3}{2}\times \frac{\sqrt{5}\sqrt{3}}{3}-\sqrt{\frac{5}{4}}
The square of \sqrt{3} is 3.
\frac{3}{2}\times \frac{\sqrt{15}}{3}-\sqrt{\frac{5}{4}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{15}}{2\times 3}-\sqrt{\frac{5}{4}}
Multiply \frac{3}{2} times \frac{\sqrt{15}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{15}}{2}-\sqrt{\frac{5}{4}}
Cancel out 3 in both numerator and denominator.
\frac{\sqrt{15}}{2}-\frac{\sqrt{5}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\frac{\sqrt{15}}{2}-\frac{\sqrt{5}}{2}
Calculate the square root of 4 and get 2.
\frac{\sqrt{15}-\sqrt{5}}{2}
Since \frac{\sqrt{15}}{2} and \frac{\sqrt{5}}{2} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}