Evaluate
\frac{19}{5}=3.8
Factor
\frac{19}{5} = 3\frac{4}{5} = 3.8
Share
Copied to clipboard
\frac{\frac{3}{10}+\frac{4}{5}\times \frac{7}{20}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Reduce the fraction \frac{35}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{3}{10}+\frac{4\times 7}{5\times 20}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Multiply \frac{4}{5} times \frac{7}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{10}+\frac{28}{100}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Do the multiplications in the fraction \frac{4\times 7}{5\times 20}.
\frac{\frac{3}{10}+\frac{7}{25}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Reduce the fraction \frac{28}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{15}{50}+\frac{14}{50}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Least common multiple of 10 and 25 is 50. Convert \frac{3}{10} and \frac{7}{25} to fractions with denominator 50.
\frac{\frac{15+14}{50}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Since \frac{15}{50} and \frac{14}{50} have the same denominator, add them by adding their numerators.
\frac{\frac{29}{50}-\frac{4}{10}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Add 15 and 14 to get 29.
\frac{\frac{29}{50}-\frac{2}{5}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{29}{50}-\frac{20}{50}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Least common multiple of 50 and 5 is 50. Convert \frac{29}{50} and \frac{2}{5} to fractions with denominator 50.
\frac{\frac{29-20}{50}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Since \frac{29}{50} and \frac{20}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{50}+\frac{7}{2}}{\frac{92}{100}}-\frac{1}{5}
Subtract 20 from 29 to get 9.
\frac{\frac{9}{50}+\frac{175}{50}}{\frac{92}{100}}-\frac{1}{5}
Least common multiple of 50 and 2 is 50. Convert \frac{9}{50} and \frac{7}{2} to fractions with denominator 50.
\frac{\frac{9+175}{50}}{\frac{92}{100}}-\frac{1}{5}
Since \frac{9}{50} and \frac{175}{50} have the same denominator, add them by adding their numerators.
\frac{\frac{184}{50}}{\frac{92}{100}}-\frac{1}{5}
Add 9 and 175 to get 184.
\frac{\frac{92}{25}}{\frac{92}{100}}-\frac{1}{5}
Reduce the fraction \frac{184}{50} to lowest terms by extracting and canceling out 2.
\frac{\frac{92}{25}}{\frac{23}{25}}-\frac{1}{5}
Reduce the fraction \frac{92}{100} to lowest terms by extracting and canceling out 4.
\frac{92}{25}\times \frac{25}{23}-\frac{1}{5}
Divide \frac{92}{25} by \frac{23}{25} by multiplying \frac{92}{25} by the reciprocal of \frac{23}{25}.
\frac{92\times 25}{25\times 23}-\frac{1}{5}
Multiply \frac{92}{25} times \frac{25}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{92}{23}-\frac{1}{5}
Cancel out 25 in both numerator and denominator.
4-\frac{1}{5}
Divide 92 by 23 to get 4.
\frac{20}{5}-\frac{1}{5}
Convert 4 to fraction \frac{20}{5}.
\frac{20-1}{5}
Since \frac{20}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{5}
Subtract 1 from 20 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}