( \frac{ 1 }{ 4 { x }^{ 2 } } - \frac{ 1 }{ xy } + \frac{ 1 }{ { y }^{ 2 } } )( \frac{ 1 }{ 2x-y } - \frac{ 1 }{ y-2x }
Evaluate
-\frac{y-2x}{2\left(xy\right)^{2}}
Expand
-\frac{y-2x}{2\left(xy\right)^{2}}
Share
Copied to clipboard
\left(\frac{y}{4yx^{2}}-\frac{4x}{4yx^{2}}+\frac{1}{y^{2}}\right)\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4x^{2} and xy is 4yx^{2}. Multiply \frac{1}{4x^{2}} times \frac{y}{y}. Multiply \frac{1}{xy} times \frac{4x}{4x}.
\left(\frac{y-4x}{4yx^{2}}+\frac{1}{y^{2}}\right)\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
Since \frac{y}{4yx^{2}} and \frac{4x}{4yx^{2}} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{\left(y-4x\right)y}{4x^{2}y^{2}}+\frac{4x^{2}}{4x^{2}y^{2}}\right)\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4yx^{2} and y^{2} is 4x^{2}y^{2}. Multiply \frac{y-4x}{4yx^{2}} times \frac{y}{y}. Multiply \frac{1}{y^{2}} times \frac{4x^{2}}{4x^{2}}.
\frac{\left(y-4x\right)y+4x^{2}}{4x^{2}y^{2}}\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
Since \frac{\left(y-4x\right)y}{4x^{2}y^{2}} and \frac{4x^{2}}{4x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}}\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
Do the multiplications in \left(y-4x\right)y+4x^{2}.
\frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}}\left(\frac{-1}{-2x+y}-\frac{1}{-2x+y}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-y and y-2x is -2x+y. Multiply \frac{1}{2x-y} times \frac{-1}{-1}.
\frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}}\times \frac{-2}{-2x+y}
Since \frac{-1}{-2x+y} and \frac{1}{-2x+y} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from -1 to get -2.
\frac{\left(y^{2}-4xy+4x^{2}\right)\left(-2\right)}{4x^{2}y^{2}\left(-2x+y\right)}
Multiply \frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}} times \frac{-2}{-2x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(4x^{2}-4xy+y^{2}\right)}{2\left(-2x+y\right)x^{2}y^{2}}
Cancel out 2 in both numerator and denominator.
\frac{4x^{2}-4xy+y^{2}}{-2\left(-2x+y\right)x^{2}y^{2}}
Cancel out -1 in both numerator and denominator.
\frac{\left(-2x+y\right)^{2}}{-2\left(-2x+y\right)x^{2}y^{2}}
Factor the expressions that are not already factored.
\frac{-2x+y}{-2x^{2}y^{2}}
Cancel out -2x+y in both numerator and denominator.
\left(\frac{y}{4yx^{2}}-\frac{4x}{4yx^{2}}+\frac{1}{y^{2}}\right)\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4x^{2} and xy is 4yx^{2}. Multiply \frac{1}{4x^{2}} times \frac{y}{y}. Multiply \frac{1}{xy} times \frac{4x}{4x}.
\left(\frac{y-4x}{4yx^{2}}+\frac{1}{y^{2}}\right)\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
Since \frac{y}{4yx^{2}} and \frac{4x}{4yx^{2}} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{\left(y-4x\right)y}{4x^{2}y^{2}}+\frac{4x^{2}}{4x^{2}y^{2}}\right)\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4yx^{2} and y^{2} is 4x^{2}y^{2}. Multiply \frac{y-4x}{4yx^{2}} times \frac{y}{y}. Multiply \frac{1}{y^{2}} times \frac{4x^{2}}{4x^{2}}.
\frac{\left(y-4x\right)y+4x^{2}}{4x^{2}y^{2}}\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
Since \frac{\left(y-4x\right)y}{4x^{2}y^{2}} and \frac{4x^{2}}{4x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}}\left(\frac{1}{2x-y}-\frac{1}{y-2x}\right)
Do the multiplications in \left(y-4x\right)y+4x^{2}.
\frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}}\left(\frac{-1}{-2x+y}-\frac{1}{-2x+y}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-y and y-2x is -2x+y. Multiply \frac{1}{2x-y} times \frac{-1}{-1}.
\frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}}\times \frac{-2}{-2x+y}
Since \frac{-1}{-2x+y} and \frac{1}{-2x+y} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from -1 to get -2.
\frac{\left(y^{2}-4xy+4x^{2}\right)\left(-2\right)}{4x^{2}y^{2}\left(-2x+y\right)}
Multiply \frac{y^{2}-4xy+4x^{2}}{4x^{2}y^{2}} times \frac{-2}{-2x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(4x^{2}-4xy+y^{2}\right)}{2\left(-2x+y\right)x^{2}y^{2}}
Cancel out 2 in both numerator and denominator.
\frac{4x^{2}-4xy+y^{2}}{-2\left(-2x+y\right)x^{2}y^{2}}
Cancel out -1 in both numerator and denominator.
\frac{\left(-2x+y\right)^{2}}{-2\left(-2x+y\right)x^{2}y^{2}}
Factor the expressions that are not already factored.
\frac{-2x+y}{-2x^{2}y^{2}}
Cancel out -2x+y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}