Evaluate
-\frac{36x^{2}}{25}+4
Expand
-\frac{36x^{2}}{25}+4
Graph
Share
Copied to clipboard
\left(\frac{-6x}{5}+\frac{2\times 5}{5}\right)\left(\frac{6x}{5}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{-6x+2\times 5}{5}\left(\frac{6x}{5}+2\right)
Since \frac{-6x}{5} and \frac{2\times 5}{5} have the same denominator, add them by adding their numerators.
\frac{-6x+10}{5}\left(\frac{6x}{5}+2\right)
Do the multiplications in -6x+2\times 5.
\frac{-6x+10}{5}\left(\frac{6x}{5}+\frac{2\times 5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{-6x+10}{5}\times \frac{6x+2\times 5}{5}
Since \frac{6x}{5} and \frac{2\times 5}{5} have the same denominator, add them by adding their numerators.
\frac{-6x+10}{5}\times \frac{6x+10}{5}
Do the multiplications in 6x+2\times 5.
\frac{\left(-6x+10\right)\left(6x+10\right)}{5\times 5}
Multiply \frac{-6x+10}{5} times \frac{6x+10}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-6x+10\right)\left(6x+10\right)}{25}
Multiply 5 and 5 to get 25.
\frac{-36x^{2}-60x+60x+100}{25}
Apply the distributive property by multiplying each term of -6x+10 by each term of 6x+10.
\frac{-36x^{2}+100}{25}
Combine -60x and 60x to get 0.
\left(\frac{-6x}{5}+\frac{2\times 5}{5}\right)\left(\frac{6x}{5}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{-6x+2\times 5}{5}\left(\frac{6x}{5}+2\right)
Since \frac{-6x}{5} and \frac{2\times 5}{5} have the same denominator, add them by adding their numerators.
\frac{-6x+10}{5}\left(\frac{6x}{5}+2\right)
Do the multiplications in -6x+2\times 5.
\frac{-6x+10}{5}\left(\frac{6x}{5}+\frac{2\times 5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{-6x+10}{5}\times \frac{6x+2\times 5}{5}
Since \frac{6x}{5} and \frac{2\times 5}{5} have the same denominator, add them by adding their numerators.
\frac{-6x+10}{5}\times \frac{6x+10}{5}
Do the multiplications in 6x+2\times 5.
\frac{\left(-6x+10\right)\left(6x+10\right)}{5\times 5}
Multiply \frac{-6x+10}{5} times \frac{6x+10}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-6x+10\right)\left(6x+10\right)}{25}
Multiply 5 and 5 to get 25.
\frac{-36x^{2}-60x+60x+100}{25}
Apply the distributive property by multiplying each term of -6x+10 by each term of 6x+10.
\frac{-36x^{2}+100}{25}
Combine -60x and 60x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}