Solve for y
y=1
Graph
Share
Copied to clipboard
2\times \frac{-2y-1}{3}-3y=-5
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
\frac{2\left(-2y-1\right)}{3}-3y=-5
Express 2\times \frac{-2y-1}{3} as a single fraction.
\frac{-4y-2}{3}-3y=-5
Use the distributive property to multiply 2 by -2y-1.
-\frac{4}{3}y-\frac{2}{3}-3y=-5
Divide each term of -4y-2 by 3 to get -\frac{4}{3}y-\frac{2}{3}.
-\frac{13}{3}y-\frac{2}{3}=-5
Combine -\frac{4}{3}y and -3y to get -\frac{13}{3}y.
-\frac{13}{3}y=-5+\frac{2}{3}
Add \frac{2}{3} to both sides.
-\frac{13}{3}y=-\frac{15}{3}+\frac{2}{3}
Convert -5 to fraction -\frac{15}{3}.
-\frac{13}{3}y=\frac{-15+2}{3}
Since -\frac{15}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
-\frac{13}{3}y=-\frac{13}{3}
Add -15 and 2 to get -13.
y=-\frac{13}{3}\left(-\frac{3}{13}\right)
Multiply both sides by -\frac{3}{13}, the reciprocal of -\frac{13}{3}.
y=\frac{-13\left(-3\right)}{3\times 13}
Multiply -\frac{13}{3} times -\frac{3}{13} by multiplying numerator times numerator and denominator times denominator.
y=\frac{39}{39}
Do the multiplications in the fraction \frac{-13\left(-3\right)}{3\times 13}.
y=1
Divide 39 by 39 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}