Evaluate
-\frac{7yx^{2}}{48}
Differentiate w.r.t. x
-\frac{7xy}{24}
Share
Copied to clipboard
\frac{xy\left(\frac{x}{6}-\frac{3x}{4}\right)}{6\times \frac{2}{3}}
Divide \frac{xy}{6} by \frac{\frac{2}{3}}{\frac{x}{6}-\frac{3x}{4}} by multiplying \frac{xy}{6} by the reciprocal of \frac{\frac{2}{3}}{\frac{x}{6}-\frac{3x}{4}}.
\frac{xy\left(\frac{2x}{12}-\frac{3\times 3x}{12}\right)}{6\times \frac{2}{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 4 is 12. Multiply \frac{x}{6} times \frac{2}{2}. Multiply \frac{3x}{4} times \frac{3}{3}.
\frac{xy\times \frac{2x-3\times 3x}{12}}{6\times \frac{2}{3}}
Since \frac{2x}{12} and \frac{3\times 3x}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{xy\times \frac{2x-9x}{12}}{6\times \frac{2}{3}}
Do the multiplications in 2x-3\times 3x.
\frac{xy\times \frac{-7x}{12}}{6\times \frac{2}{3}}
Combine like terms in 2x-9x.
\frac{\frac{x\left(-7\right)x}{12}y}{6\times \frac{2}{3}}
Express x\times \frac{-7x}{12} as a single fraction.
\frac{\frac{x\left(-7\right)x}{12}y}{\frac{6\times 2}{3}}
Express 6\times \frac{2}{3} as a single fraction.
\frac{\frac{x\left(-7\right)x}{12}y}{\frac{12}{3}}
Multiply 6 and 2 to get 12.
\frac{\frac{x\left(-7\right)x}{12}y}{4}
Divide 12 by 3 to get 4.
\frac{\frac{x^{2}\left(-7\right)}{12}y}{4}
Multiply x and x to get x^{2}.
\frac{\frac{x^{2}\left(-7\right)y}{12}}{4}
Express \frac{x^{2}\left(-7\right)}{12}y as a single fraction.
\frac{x^{2}\left(-7\right)y}{12\times 4}
Express \frac{\frac{x^{2}\left(-7\right)y}{12}}{4} as a single fraction.
\frac{x^{2}\left(-7\right)y}{48}
Multiply 12 and 4 to get 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}