Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-2}{x-1}-\left(\frac{2\left(x+4\right)}{x+4}+\frac{12}{x+4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+4}{x+4}.
\frac{x-2}{x-1}-\frac{2\left(x+4\right)+12}{x+4}
Since \frac{2\left(x+4\right)}{x+4} and \frac{12}{x+4} have the same denominator, add them by adding their numerators.
\frac{x-2}{x-1}-\frac{2x+8+12}{x+4}
Do the multiplications in 2\left(x+4\right)+12.
\frac{x-2}{x-1}-\frac{2x+20}{x+4}
Combine like terms in 2x+8+12.
\frac{\left(x-2\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}-\frac{\left(2x+20\right)\left(x-1\right)}{\left(x-1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+4 is \left(x-1\right)\left(x+4\right). Multiply \frac{x-2}{x-1} times \frac{x+4}{x+4}. Multiply \frac{2x+20}{x+4} times \frac{x-1}{x-1}.
\frac{\left(x-2\right)\left(x+4\right)-\left(2x+20\right)\left(x-1\right)}{\left(x-1\right)\left(x+4\right)}
Since \frac{\left(x-2\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)} and \frac{\left(2x+20\right)\left(x-1\right)}{\left(x-1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4x-2x-8-2x^{2}+2x-20x+20}{\left(x-1\right)\left(x+4\right)}
Do the multiplications in \left(x-2\right)\left(x+4\right)-\left(2x+20\right)\left(x-1\right).
\frac{-x^{2}-16x+12}{\left(x-1\right)\left(x+4\right)}
Combine like terms in x^{2}+4x-2x-8-2x^{2}+2x-20x+20.
\frac{-x^{2}-16x+12}{x^{2}+3x-4}
Expand \left(x-1\right)\left(x+4\right).
\frac{x-2}{x-1}-\left(\frac{2\left(x+4\right)}{x+4}+\frac{12}{x+4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+4}{x+4}.
\frac{x-2}{x-1}-\frac{2\left(x+4\right)+12}{x+4}
Since \frac{2\left(x+4\right)}{x+4} and \frac{12}{x+4} have the same denominator, add them by adding their numerators.
\frac{x-2}{x-1}-\frac{2x+8+12}{x+4}
Do the multiplications in 2\left(x+4\right)+12.
\frac{x-2}{x-1}-\frac{2x+20}{x+4}
Combine like terms in 2x+8+12.
\frac{\left(x-2\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}-\frac{\left(2x+20\right)\left(x-1\right)}{\left(x-1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+4 is \left(x-1\right)\left(x+4\right). Multiply \frac{x-2}{x-1} times \frac{x+4}{x+4}. Multiply \frac{2x+20}{x+4} times \frac{x-1}{x-1}.
\frac{\left(x-2\right)\left(x+4\right)-\left(2x+20\right)\left(x-1\right)}{\left(x-1\right)\left(x+4\right)}
Since \frac{\left(x-2\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)} and \frac{\left(2x+20\right)\left(x-1\right)}{\left(x-1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4x-2x-8-2x^{2}+2x-20x+20}{\left(x-1\right)\left(x+4\right)}
Do the multiplications in \left(x-2\right)\left(x+4\right)-\left(2x+20\right)\left(x-1\right).
\frac{-x^{2}-16x+12}{\left(x-1\right)\left(x+4\right)}
Combine like terms in x^{2}+4x-2x-8-2x^{2}+2x-20x+20.
\frac{-x^{2}-16x+12}{x^{2}+3x-4}
Expand \left(x-1\right)\left(x+4\right).