Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\left(\left(\frac{x-2}{x+2}\right)^{2}-4\times \frac{x-2}{x+2}\right)+\left(x+2\right)\times 3=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-4\times \frac{x-2}{x+2}\right)+\left(x+2\right)\times 3=0
To raise \frac{x-2}{x+2} to a power, raise both numerator and denominator to the power and then divide.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{4\left(x-2\right)}{x+2}\right)+\left(x+2\right)\times 3=0
Express 4\times \frac{x-2}{x+2} as a single fraction.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{4x-8}{x+2}\right)+\left(x+2\right)\times 3=0
Use the distributive property to multiply 4 by x-2.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}}\right)+\left(x+2\right)\times 3=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)^{2} and x+2 is \left(x+2\right)^{2}. Multiply \frac{4x-8}{x+2} times \frac{x+2}{x+2}.
\left(x+2\right)\times \frac{\left(x-2\right)^{2}-\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Since \frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}} and \frac{\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\left(x+2\right)\times \frac{x^{2}-4x+4-4x^{2}-8x+8x+16}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Do the multiplications in \left(x-2\right)^{2}-\left(4x-8\right)\left(x+2\right).
\left(x+2\right)\times \frac{-3x^{2}-4x+20}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Combine like terms in x^{2}-4x+4-4x^{2}-8x+8x+16.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Express \left(x+2\right)\times \frac{-3x^{2}-4x+20}{\left(x+2\right)^{2}} as a single fraction.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+3x+6=0
Use the distributive property to multiply x+2 by 3.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+\frac{\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+6 times \frac{\left(x+2\right)^{2}}{\left(x+2\right)^{2}}.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)+\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}}=0
Since \frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}} and \frac{\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-3x^{3}-4x^{2}+20x-6x^{2}-8x+40+3x^{3}+12x^{2}+12x+6x^{2}+24x+24}{\left(x+2\right)^{2}}=0
Do the multiplications in \left(x+2\right)\left(-3x^{2}-4x+20\right)+\left(3x+6\right)\left(x+2\right)^{2}.
\frac{8x^{2}+48x+64}{\left(x+2\right)^{2}}=0
Combine like terms in -3x^{3}-4x^{2}+20x-6x^{2}-8x+40+3x^{3}+12x^{2}+12x+6x^{2}+24x+24.
\frac{8x^{2}+48x+64}{x^{2}+4x+4}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
8x^{2}+48x+64=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)^{2}.
x^{2}+6x+8=0
Divide both sides by 8.
a+b=6 ab=1\times 8=8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=2 b=4
The solution is the pair that gives sum 6.
\left(x^{2}+2x\right)+\left(4x+8\right)
Rewrite x^{2}+6x+8 as \left(x^{2}+2x\right)+\left(4x+8\right).
x\left(x+2\right)+4\left(x+2\right)
Factor out x in the first and 4 in the second group.
\left(x+2\right)\left(x+4\right)
Factor out common term x+2 by using distributive property.
x=-2 x=-4
To find equation solutions, solve x+2=0 and x+4=0.
x=-4
Variable x cannot be equal to -2.
\left(x+2\right)\left(\left(\frac{x-2}{x+2}\right)^{2}-4\times \frac{x-2}{x+2}\right)+\left(x+2\right)\times 3=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-4\times \frac{x-2}{x+2}\right)+\left(x+2\right)\times 3=0
To raise \frac{x-2}{x+2} to a power, raise both numerator and denominator to the power and then divide.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{4\left(x-2\right)}{x+2}\right)+\left(x+2\right)\times 3=0
Express 4\times \frac{x-2}{x+2} as a single fraction.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{4x-8}{x+2}\right)+\left(x+2\right)\times 3=0
Use the distributive property to multiply 4 by x-2.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}}\right)+\left(x+2\right)\times 3=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)^{2} and x+2 is \left(x+2\right)^{2}. Multiply \frac{4x-8}{x+2} times \frac{x+2}{x+2}.
\left(x+2\right)\times \frac{\left(x-2\right)^{2}-\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Since \frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}} and \frac{\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\left(x+2\right)\times \frac{x^{2}-4x+4-4x^{2}-8x+8x+16}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Do the multiplications in \left(x-2\right)^{2}-\left(4x-8\right)\left(x+2\right).
\left(x+2\right)\times \frac{-3x^{2}-4x+20}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Combine like terms in x^{2}-4x+4-4x^{2}-8x+8x+16.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Express \left(x+2\right)\times \frac{-3x^{2}-4x+20}{\left(x+2\right)^{2}} as a single fraction.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+3x+6=0
Use the distributive property to multiply x+2 by 3.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+\frac{\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+6 times \frac{\left(x+2\right)^{2}}{\left(x+2\right)^{2}}.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)+\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}}=0
Since \frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}} and \frac{\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-3x^{3}-4x^{2}+20x-6x^{2}-8x+40+3x^{3}+12x^{2}+12x+6x^{2}+24x+24}{\left(x+2\right)^{2}}=0
Do the multiplications in \left(x+2\right)\left(-3x^{2}-4x+20\right)+\left(3x+6\right)\left(x+2\right)^{2}.
\frac{8x^{2}+48x+64}{\left(x+2\right)^{2}}=0
Combine like terms in -3x^{3}-4x^{2}+20x-6x^{2}-8x+40+3x^{3}+12x^{2}+12x+6x^{2}+24x+24.
\frac{8x^{2}+48x+64}{x^{2}+4x+4}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
8x^{2}+48x+64=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)^{2}.
x=\frac{-48±\sqrt{48^{2}-4\times 8\times 64}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 48 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 8\times 64}}{2\times 8}
Square 48.
x=\frac{-48±\sqrt{2304-32\times 64}}{2\times 8}
Multiply -4 times 8.
x=\frac{-48±\sqrt{2304-2048}}{2\times 8}
Multiply -32 times 64.
x=\frac{-48±\sqrt{256}}{2\times 8}
Add 2304 to -2048.
x=\frac{-48±16}{2\times 8}
Take the square root of 256.
x=\frac{-48±16}{16}
Multiply 2 times 8.
x=-\frac{32}{16}
Now solve the equation x=\frac{-48±16}{16} when ± is plus. Add -48 to 16.
x=-2
Divide -32 by 16.
x=-\frac{64}{16}
Now solve the equation x=\frac{-48±16}{16} when ± is minus. Subtract 16 from -48.
x=-4
Divide -64 by 16.
x=-2 x=-4
The equation is now solved.
x=-4
Variable x cannot be equal to -2.
\left(x+2\right)\left(\left(\frac{x-2}{x+2}\right)^{2}-4\times \frac{x-2}{x+2}\right)+\left(x+2\right)\times 3=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-4\times \frac{x-2}{x+2}\right)+\left(x+2\right)\times 3=0
To raise \frac{x-2}{x+2} to a power, raise both numerator and denominator to the power and then divide.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{4\left(x-2\right)}{x+2}\right)+\left(x+2\right)\times 3=0
Express 4\times \frac{x-2}{x+2} as a single fraction.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{4x-8}{x+2}\right)+\left(x+2\right)\times 3=0
Use the distributive property to multiply 4 by x-2.
\left(x+2\right)\left(\frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}}-\frac{\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}}\right)+\left(x+2\right)\times 3=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)^{2} and x+2 is \left(x+2\right)^{2}. Multiply \frac{4x-8}{x+2} times \frac{x+2}{x+2}.
\left(x+2\right)\times \frac{\left(x-2\right)^{2}-\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Since \frac{\left(x-2\right)^{2}}{\left(x+2\right)^{2}} and \frac{\left(4x-8\right)\left(x+2\right)}{\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\left(x+2\right)\times \frac{x^{2}-4x+4-4x^{2}-8x+8x+16}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Do the multiplications in \left(x-2\right)^{2}-\left(4x-8\right)\left(x+2\right).
\left(x+2\right)\times \frac{-3x^{2}-4x+20}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Combine like terms in x^{2}-4x+4-4x^{2}-8x+8x+16.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+\left(x+2\right)\times 3=0
Express \left(x+2\right)\times \frac{-3x^{2}-4x+20}{\left(x+2\right)^{2}} as a single fraction.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+3x+6=0
Use the distributive property to multiply x+2 by 3.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}}+\frac{\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+6 times \frac{\left(x+2\right)^{2}}{\left(x+2\right)^{2}}.
\frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)+\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}}=0
Since \frac{\left(x+2\right)\left(-3x^{2}-4x+20\right)}{\left(x+2\right)^{2}} and \frac{\left(3x+6\right)\left(x+2\right)^{2}}{\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-3x^{3}-4x^{2}+20x-6x^{2}-8x+40+3x^{3}+12x^{2}+12x+6x^{2}+24x+24}{\left(x+2\right)^{2}}=0
Do the multiplications in \left(x+2\right)\left(-3x^{2}-4x+20\right)+\left(3x+6\right)\left(x+2\right)^{2}.
\frac{8x^{2}+48x+64}{\left(x+2\right)^{2}}=0
Combine like terms in -3x^{3}-4x^{2}+20x-6x^{2}-8x+40+3x^{3}+12x^{2}+12x+6x^{2}+24x+24.
\frac{8x^{2}+48x+64}{x^{2}+4x+4}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
8x^{2}+48x+64=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)^{2}.
8x^{2}+48x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{8x^{2}+48x}{8}=-\frac{64}{8}
Divide both sides by 8.
x^{2}+\frac{48}{8}x=-\frac{64}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+6x=-\frac{64}{8}
Divide 48 by 8.
x^{2}+6x=-8
Divide -64 by 8.
x^{2}+6x+3^{2}=-8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-8+9
Square 3.
x^{2}+6x+9=1
Add -8 to 9.
\left(x+3\right)^{2}=1
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+3=1 x+3=-1
Simplify.
x=-2 x=-4
Subtract 3 from both sides of the equation.
x=-4
Variable x cannot be equal to -2.