Evaluate
1
Factor
1
Graph
Share
Copied to clipboard
\frac{\left(x-1\right)^{2}}{\left(x-3\right)^{2}}+2\times \frac{x-1}{x-3}\times \frac{2}{3-x}+\left(\frac{2}{3-x}\right)^{2}
To raise \frac{x-1}{x-3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x-1\right)^{2}}{\left(x-3\right)^{2}}+\frac{2\left(x-1\right)}{x-3}\times \frac{2}{3-x}+\left(\frac{2}{3-x}\right)^{2}
Express 2\times \frac{x-1}{x-3} as a single fraction.
\frac{\left(x-1\right)^{2}}{\left(x-3\right)^{2}}+\frac{2\left(x-1\right)\times 2}{\left(x-3\right)\left(3-x\right)}+\left(\frac{2}{3-x}\right)^{2}
Multiply \frac{2\left(x-1\right)}{x-3} times \frac{2}{3-x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-1\right)^{2}}{\left(x-3\right)^{2}}+\frac{2\left(x-1\right)\times 2}{\left(x-3\right)\left(3-x\right)}+\frac{2^{2}}{\left(3-x\right)^{2}}
To raise \frac{2}{3-x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x-1\right)^{2}}{\left(x-3\right)^{2}}+\frac{-2\left(x-1\right)\times 2}{\left(x-3\right)^{2}}+\frac{2^{2}}{\left(3-x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(3-x\right) is \left(x-3\right)^{2}. Multiply \frac{2\left(x-1\right)\times 2}{\left(x-3\right)\left(3-x\right)} times \frac{-1}{-1}.
\frac{\left(x-1\right)^{2}-2\left(x-1\right)\times 2}{\left(x-3\right)^{2}}+\frac{2^{2}}{\left(3-x\right)^{2}}
Since \frac{\left(x-1\right)^{2}}{\left(x-3\right)^{2}} and \frac{-2\left(x-1\right)\times 2}{\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+1-4x+4}{\left(x-3\right)^{2}}+\frac{2^{2}}{\left(3-x\right)^{2}}
Do the multiplications in \left(x-1\right)^{2}-2\left(x-1\right)\times 2.
\frac{x^{2}-6x+5}{\left(x-3\right)^{2}}+\frac{2^{2}}{\left(3-x\right)^{2}}
Combine like terms in x^{2}-2x+1-4x+4.
\frac{x^{2}-6x+5}{\left(x-3\right)^{2}}+\frac{2^{2}}{\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Expand \left(3-x\right)^{2}.
\frac{x^{2}-6x+5+2^{2}}{\left(x-3\right)^{2}}
Since \frac{x^{2}-6x+5}{\left(x-3\right)^{2}} and \frac{2^{2}}{\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-6x+9}{\left(x-3\right)^{2}}
Combine like terms in x^{2}-6x+5+2^{2}.
\frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-6x+9}{\left(x-3\right)^{2}}.
1
Cancel out \left(x-3\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}