Solve for x
x = \frac{2 \sqrt{3}}{3} \approx 1.154700538
x = -\frac{2 \sqrt{3}}{3} \approx -1.154700538
Graph
Share
Copied to clipboard
\frac{x^{2}}{\left(x-2\right)^{2}}+\left(\frac{x}{x+2}\right)^{2}=2
To raise \frac{x}{x-2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{\left(x-2\right)^{2}}+\frac{x^{2}}{\left(x+2\right)^{2}}=2
To raise \frac{x}{x+2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}+\frac{x^{2}\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x+2\right)^{2} is \left(x-2\right)^{2}\left(x+2\right)^{2}. Multiply \frac{x^{2}}{\left(x-2\right)^{2}} times \frac{\left(x+2\right)^{2}}{\left(x+2\right)^{2}}. Multiply \frac{x^{2}}{\left(x+2\right)^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{x^{2}\left(x+2\right)^{2}+x^{2}\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
Since \frac{x^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} and \frac{x^{2}\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+4x^{3}+4x^{2}+x^{4}-4x^{3}+4x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
Do the multiplications in x^{2}\left(x+2\right)^{2}+x^{2}\left(x-2\right)^{2}.
\frac{2x^{4}+8x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
Combine like terms in x^{4}+4x^{3}+4x^{2}+x^{4}-4x^{3}+4x^{2}.
\frac{2x^{4}+8x^{2}}{\left(x^{2}-4x+4\right)\left(x+2\right)^{2}}=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\frac{2x^{4}+8x^{2}}{\left(x^{2}-4x+4\right)\left(x^{2}+4x+4\right)}=2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{4}+8x^{2}=2\left(x-2\right)^{2}\left(x+2\right)^{2}
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}\left(x+2\right)^{2}.
2x^{4}+8x^{2}=2\left(x^{2}-4x+4\right)\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2x^{4}+8x^{2}=2\left(x^{2}-4x+4\right)\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{4}+8x^{2}=\left(2x^{2}-8x+8\right)\left(x^{2}+4x+4\right)
Use the distributive property to multiply 2 by x^{2}-4x+4.
2x^{4}+8x^{2}=2x^{4}-16x^{2}+32
Use the distributive property to multiply 2x^{2}-8x+8 by x^{2}+4x+4 and combine like terms.
2x^{4}+8x^{2}-2x^{4}=-16x^{2}+32
Subtract 2x^{4} from both sides.
8x^{2}=-16x^{2}+32
Combine 2x^{4} and -2x^{4} to get 0.
8x^{2}+16x^{2}=32
Add 16x^{2} to both sides.
24x^{2}=32
Combine 8x^{2} and 16x^{2} to get 24x^{2}.
x^{2}=\frac{32}{24}
Divide both sides by 24.
x^{2}=\frac{4}{3}
Reduce the fraction \frac{32}{24} to lowest terms by extracting and canceling out 8.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
Take the square root of both sides of the equation.
\frac{x^{2}}{\left(x-2\right)^{2}}+\left(\frac{x}{x+2}\right)^{2}=2
To raise \frac{x}{x-2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{\left(x-2\right)^{2}}+\frac{x^{2}}{\left(x+2\right)^{2}}=2
To raise \frac{x}{x+2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}+\frac{x^{2}\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x+2\right)^{2} is \left(x-2\right)^{2}\left(x+2\right)^{2}. Multiply \frac{x^{2}}{\left(x-2\right)^{2}} times \frac{\left(x+2\right)^{2}}{\left(x+2\right)^{2}}. Multiply \frac{x^{2}}{\left(x+2\right)^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{x^{2}\left(x+2\right)^{2}+x^{2}\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
Since \frac{x^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} and \frac{x^{2}\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+4x^{3}+4x^{2}+x^{4}-4x^{3}+4x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
Do the multiplications in x^{2}\left(x+2\right)^{2}+x^{2}\left(x-2\right)^{2}.
\frac{2x^{4}+8x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=2
Combine like terms in x^{4}+4x^{3}+4x^{2}+x^{4}-4x^{3}+4x^{2}.
\frac{2x^{4}+8x^{2}}{\left(x^{2}-4x+4\right)\left(x+2\right)^{2}}=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\frac{2x^{4}+8x^{2}}{\left(x^{2}-4x+4\right)\left(x^{2}+4x+4\right)}=2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
\frac{2x^{4}+8x^{2}}{\left(x^{2}-4x+4\right)\left(x^{2}+4x+4\right)}-2=0
Subtract 2 from both sides.
\frac{2x^{4}+8x^{2}}{x^{4}-8x^{2}+16}-2=0
Use the distributive property to multiply x^{2}-4x+4 by x^{2}+4x+4 and combine like terms.
\frac{2x^{4}+8x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}-2=0
Factor x^{4}-8x^{2}+16.
\frac{2x^{4}+8x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}-\frac{2\left(x-2\right)^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x-2\right)^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}.
\frac{2x^{4}+8x^{2}-2\left(x-2\right)^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=0
Since \frac{2x^{4}+8x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} and \frac{2\left(x-2\right)^{2}\left(x+2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{4}+8x^{2}-2x^{4}-8x^{3}-8x^{2}+8x^{3}+32x^{2}+32x-8x^{2}-32x-32}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=0
Do the multiplications in 2x^{4}+8x^{2}-2\left(x-2\right)^{2}\left(x+2\right)^{2}.
\frac{24x^{2}-32}{\left(x-2\right)^{2}\left(x+2\right)^{2}}=0
Combine like terms in 2x^{4}+8x^{2}-2x^{4}-8x^{3}-8x^{2}+8x^{3}+32x^{2}+32x-8x^{2}-32x-32.
24x^{2}-32=0
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}\left(x+2\right)^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 24\left(-32\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 0 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24\left(-32\right)}}{2\times 24}
Square 0.
x=\frac{0±\sqrt{-96\left(-32\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{0±\sqrt{3072}}{2\times 24}
Multiply -96 times -32.
x=\frac{0±32\sqrt{3}}{2\times 24}
Take the square root of 3072.
x=\frac{0±32\sqrt{3}}{48}
Multiply 2 times 24.
x=\frac{2\sqrt{3}}{3}
Now solve the equation x=\frac{0±32\sqrt{3}}{48} when ± is plus.
x=-\frac{2\sqrt{3}}{3}
Now solve the equation x=\frac{0±32\sqrt{3}}{48} when ± is minus.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}