Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x}{x+1}+\frac{x+1}{x+1}}{1-\frac{3x^{2}}{1-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+1}{x+1}.
\frac{\frac{x+x+1}{x+1}}{1-\frac{3x^{2}}{1-x^{2}}}
Since \frac{x}{x+1} and \frac{x+1}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+1}{x+1}}{1-\frac{3x^{2}}{1-x^{2}}}
Combine like terms in x+x+1.
\frac{\frac{2x+1}{x+1}}{1-\frac{3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
Factor 1-x^{2}.
\frac{\frac{2x+1}{x+1}}{\frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{\frac{2x+1}{x+1}}{\frac{\left(x-1\right)\left(-x-1\right)-3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
Since \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{3x^{2}}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x+1}{x+1}}{\frac{-x^{2}-x+x+1-3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
Do the multiplications in \left(x-1\right)\left(-x-1\right)-3x^{2}.
\frac{\frac{2x+1}{x+1}}{\frac{-4x^{2}+1}{\left(x-1\right)\left(-x-1\right)}}
Combine like terms in -x^{2}-x+x+1-3x^{2}.
\frac{\left(2x+1\right)\left(x-1\right)\left(-x-1\right)}{\left(x+1\right)\left(-4x^{2}+1\right)}
Divide \frac{2x+1}{x+1} by \frac{-4x^{2}+1}{\left(x-1\right)\left(-x-1\right)} by multiplying \frac{2x+1}{x+1} by the reciprocal of \frac{-4x^{2}+1}{\left(x-1\right)\left(-x-1\right)}.
\frac{-\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x+1\right)\left(-4x^{2}+1\right)}
Extract the negative sign in -x-1.
\frac{-\left(x-1\right)\left(2x+1\right)}{-4x^{2}+1}
Cancel out x+1 in both numerator and denominator.
\frac{-\left(x-1\right)\left(2x+1\right)}{\left(-2x-1\right)\left(2x-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-1\right)\left(-2x-1\right)}{\left(-2x-1\right)\left(2x-1\right)}
Extract the negative sign in 1+2x.
\frac{-\left(-1\right)\left(x-1\right)}{2x-1}
Cancel out -2x-1 in both numerator and denominator.
\frac{x-1}{2x-1}
Expand the expression.
\frac{\frac{x}{x+1}+\frac{x+1}{x+1}}{1-\frac{3x^{2}}{1-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+1}{x+1}.
\frac{\frac{x+x+1}{x+1}}{1-\frac{3x^{2}}{1-x^{2}}}
Since \frac{x}{x+1} and \frac{x+1}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+1}{x+1}}{1-\frac{3x^{2}}{1-x^{2}}}
Combine like terms in x+x+1.
\frac{\frac{2x+1}{x+1}}{1-\frac{3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
Factor 1-x^{2}.
\frac{\frac{2x+1}{x+1}}{\frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{\frac{2x+1}{x+1}}{\frac{\left(x-1\right)\left(-x-1\right)-3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
Since \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{3x^{2}}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x+1}{x+1}}{\frac{-x^{2}-x+x+1-3x^{2}}{\left(x-1\right)\left(-x-1\right)}}
Do the multiplications in \left(x-1\right)\left(-x-1\right)-3x^{2}.
\frac{\frac{2x+1}{x+1}}{\frac{-4x^{2}+1}{\left(x-1\right)\left(-x-1\right)}}
Combine like terms in -x^{2}-x+x+1-3x^{2}.
\frac{\left(2x+1\right)\left(x-1\right)\left(-x-1\right)}{\left(x+1\right)\left(-4x^{2}+1\right)}
Divide \frac{2x+1}{x+1} by \frac{-4x^{2}+1}{\left(x-1\right)\left(-x-1\right)} by multiplying \frac{2x+1}{x+1} by the reciprocal of \frac{-4x^{2}+1}{\left(x-1\right)\left(-x-1\right)}.
\frac{-\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x+1\right)\left(-4x^{2}+1\right)}
Extract the negative sign in -x-1.
\frac{-\left(x-1\right)\left(2x+1\right)}{-4x^{2}+1}
Cancel out x+1 in both numerator and denominator.
\frac{-\left(x-1\right)\left(2x+1\right)}{\left(-2x-1\right)\left(2x-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-1\right)\left(-2x-1\right)}{\left(-2x-1\right)\left(2x-1\right)}
Extract the negative sign in 1+2x.
\frac{-\left(-1\right)\left(x-1\right)}{2x-1}
Cancel out -2x-1 in both numerator and denominator.
\frac{x-1}{2x-1}
Expand the expression.