Solve for x
x=\frac{4\sqrt{1394}}{205}\approx 0.728513354
x=-\frac{4\sqrt{1394}}{205}\approx -0.728513354
Graph
Share
Copied to clipboard
\frac{x^{2}}{4^{2}}+64x^{2}=34
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{4^{2}}+\frac{64x^{2}\times 4^{2}}{4^{2}}=34
To add or subtract expressions, expand them to make their denominators the same. Multiply 64x^{2} times \frac{4^{2}}{4^{2}}.
\frac{x^{2}+64x^{2}\times 4^{2}}{4^{2}}=34
Since \frac{x^{2}}{4^{2}} and \frac{64x^{2}\times 4^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1024x^{2}}{4^{2}}=34
Do the multiplications in x^{2}+64x^{2}\times 4^{2}.
\frac{1025x^{2}}{4^{2}}=34
Combine like terms in x^{2}+1024x^{2}.
\frac{1025x^{2}}{16}=34
Calculate 4 to the power of 2 and get 16.
1025x^{2}=34\times 16
Multiply both sides by 16.
1025x^{2}=544
Multiply 34 and 16 to get 544.
x^{2}=\frac{544}{1025}
Divide both sides by 1025.
x=\frac{4\sqrt{1394}}{205} x=-\frac{4\sqrt{1394}}{205}
Take the square root of both sides of the equation.
\frac{x^{2}}{4^{2}}+64x^{2}=34
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{4^{2}}+\frac{64x^{2}\times 4^{2}}{4^{2}}=34
To add or subtract expressions, expand them to make their denominators the same. Multiply 64x^{2} times \frac{4^{2}}{4^{2}}.
\frac{x^{2}+64x^{2}\times 4^{2}}{4^{2}}=34
Since \frac{x^{2}}{4^{2}} and \frac{64x^{2}\times 4^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1024x^{2}}{4^{2}}=34
Do the multiplications in x^{2}+64x^{2}\times 4^{2}.
\frac{1025x^{2}}{4^{2}}=34
Combine like terms in x^{2}+1024x^{2}.
\frac{1025x^{2}}{16}=34
Calculate 4 to the power of 2 and get 16.
\frac{1025x^{2}}{16}-34=0
Subtract 34 from both sides.
1025x^{2}-544=0
Multiply both sides of the equation by 16.
x=\frac{0±\sqrt{0^{2}-4\times 1025\left(-544\right)}}{2\times 1025}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1025 for a, 0 for b, and -544 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1025\left(-544\right)}}{2\times 1025}
Square 0.
x=\frac{0±\sqrt{-4100\left(-544\right)}}{2\times 1025}
Multiply -4 times 1025.
x=\frac{0±\sqrt{2230400}}{2\times 1025}
Multiply -4100 times -544.
x=\frac{0±40\sqrt{1394}}{2\times 1025}
Take the square root of 2230400.
x=\frac{0±40\sqrt{1394}}{2050}
Multiply 2 times 1025.
x=\frac{4\sqrt{1394}}{205}
Now solve the equation x=\frac{0±40\sqrt{1394}}{2050} when ± is plus.
x=-\frac{4\sqrt{1394}}{205}
Now solve the equation x=\frac{0±40\sqrt{1394}}{2050} when ± is minus.
x=\frac{4\sqrt{1394}}{205} x=-\frac{4\sqrt{1394}}{205}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}