Solve for x
x=12
x=28
Graph
Share
Copied to clipboard
\frac{x^{2}}{4^{2}}+\left(\frac{40-x}{4}\right)^{2}=58
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{4^{2}}+\frac{\left(40-x\right)^{2}}{4^{2}}=58
To raise \frac{40-x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+\left(40-x\right)^{2}}{4^{2}}=58
Since \frac{x^{2}}{4^{2}} and \frac{\left(40-x\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1600-80x+x^{2}}{4^{2}}=58
Do the multiplications in x^{2}+\left(40-x\right)^{2}.
\frac{2x^{2}+1600-80x}{4^{2}}=58
Combine like terms in x^{2}+1600-80x+x^{2}.
\frac{2x^{2}+1600-80x}{16}=58
Calculate 4 to the power of 2 and get 16.
\frac{1}{8}x^{2}+100-5x=58
Divide each term of 2x^{2}+1600-80x by 16 to get \frac{1}{8}x^{2}+100-5x.
\frac{1}{8}x^{2}+100-5x-58=0
Subtract 58 from both sides.
\frac{1}{8}x^{2}+42-5x=0
Subtract 58 from 100 to get 42.
\frac{1}{8}x^{2}-5x+42=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{1}{8}\times 42}}{2\times \frac{1}{8}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{8} for a, -5 for b, and 42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times \frac{1}{8}\times 42}}{2\times \frac{1}{8}}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-\frac{1}{2}\times 42}}{2\times \frac{1}{8}}
Multiply -4 times \frac{1}{8}.
x=\frac{-\left(-5\right)±\sqrt{25-21}}{2\times \frac{1}{8}}
Multiply -\frac{1}{2} times 42.
x=\frac{-\left(-5\right)±\sqrt{4}}{2\times \frac{1}{8}}
Add 25 to -21.
x=\frac{-\left(-5\right)±2}{2\times \frac{1}{8}}
Take the square root of 4.
x=\frac{5±2}{2\times \frac{1}{8}}
The opposite of -5 is 5.
x=\frac{5±2}{\frac{1}{4}}
Multiply 2 times \frac{1}{8}.
x=\frac{7}{\frac{1}{4}}
Now solve the equation x=\frac{5±2}{\frac{1}{4}} when ± is plus. Add 5 to 2.
x=28
Divide 7 by \frac{1}{4} by multiplying 7 by the reciprocal of \frac{1}{4}.
x=\frac{3}{\frac{1}{4}}
Now solve the equation x=\frac{5±2}{\frac{1}{4}} when ± is minus. Subtract 2 from 5.
x=12
Divide 3 by \frac{1}{4} by multiplying 3 by the reciprocal of \frac{1}{4}.
x=28 x=12
The equation is now solved.
\frac{x^{2}}{4^{2}}+\left(\frac{40-x}{4}\right)^{2}=58
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{4^{2}}+\frac{\left(40-x\right)^{2}}{4^{2}}=58
To raise \frac{40-x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+\left(40-x\right)^{2}}{4^{2}}=58
Since \frac{x^{2}}{4^{2}} and \frac{\left(40-x\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1600-80x+x^{2}}{4^{2}}=58
Do the multiplications in x^{2}+\left(40-x\right)^{2}.
\frac{2x^{2}+1600-80x}{4^{2}}=58
Combine like terms in x^{2}+1600-80x+x^{2}.
\frac{2x^{2}+1600-80x}{16}=58
Calculate 4 to the power of 2 and get 16.
\frac{1}{8}x^{2}+100-5x=58
Divide each term of 2x^{2}+1600-80x by 16 to get \frac{1}{8}x^{2}+100-5x.
\frac{1}{8}x^{2}-5x=58-100
Subtract 100 from both sides.
\frac{1}{8}x^{2}-5x=-42
Subtract 100 from 58 to get -42.
\frac{\frac{1}{8}x^{2}-5x}{\frac{1}{8}}=-\frac{42}{\frac{1}{8}}
Multiply both sides by 8.
x^{2}+\left(-\frac{5}{\frac{1}{8}}\right)x=-\frac{42}{\frac{1}{8}}
Dividing by \frac{1}{8} undoes the multiplication by \frac{1}{8}.
x^{2}-40x=-\frac{42}{\frac{1}{8}}
Divide -5 by \frac{1}{8} by multiplying -5 by the reciprocal of \frac{1}{8}.
x^{2}-40x=-336
Divide -42 by \frac{1}{8} by multiplying -42 by the reciprocal of \frac{1}{8}.
x^{2}-40x+\left(-20\right)^{2}=-336+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-336+400
Square -20.
x^{2}-40x+400=64
Add -336 to 400.
\left(x-20\right)^{2}=64
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x-20=8 x-20=-8
Simplify.
x=28 x=12
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}