Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{xx}{3x}-\frac{3\times 3}{3x}\right)\left(\frac{x}{4}+\frac{4}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and x is 3x. Multiply \frac{x}{3} times \frac{x}{x}. Multiply \frac{3}{x} times \frac{3}{3}.
\frac{xx-3\times 3}{3x}\left(\frac{x}{4}+\frac{4}{x}\right)
Since \frac{xx}{3x} and \frac{3\times 3}{3x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-9}{3x}\left(\frac{x}{4}+\frac{4}{x}\right)
Do the multiplications in xx-3\times 3.
\frac{x^{2}-9}{3x}\left(\frac{xx}{4x}+\frac{4\times 4}{4x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and x is 4x. Multiply \frac{x}{4} times \frac{x}{x}. Multiply \frac{4}{x} times \frac{4}{4}.
\frac{x^{2}-9}{3x}\times \frac{xx+4\times 4}{4x}
Since \frac{xx}{4x} and \frac{4\times 4}{4x} have the same denominator, add them by adding their numerators.
\frac{x^{2}-9}{3x}\times \frac{x^{2}+16}{4x}
Do the multiplications in xx+4\times 4.
\frac{\left(x^{2}-9\right)\left(x^{2}+16\right)}{3x\times 4x}
Multiply \frac{x^{2}-9}{3x} times \frac{x^{2}+16}{4x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-9\right)\left(x^{2}+16\right)}{3x^{2}\times 4}
Multiply x and x to get x^{2}.
\frac{\left(x^{2}-9\right)\left(x^{2}+16\right)}{12x^{2}}
Multiply 3 and 4 to get 12.
\frac{x^{4}+16x^{2}-9x^{2}-144}{12x^{2}}
Apply the distributive property by multiplying each term of x^{2}-9 by each term of x^{2}+16.
\frac{x^{4}+7x^{2}-144}{12x^{2}}
Combine 16x^{2} and -9x^{2} to get 7x^{2}.
\left(\frac{xx}{3x}-\frac{3\times 3}{3x}\right)\left(\frac{x}{4}+\frac{4}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and x is 3x. Multiply \frac{x}{3} times \frac{x}{x}. Multiply \frac{3}{x} times \frac{3}{3}.
\frac{xx-3\times 3}{3x}\left(\frac{x}{4}+\frac{4}{x}\right)
Since \frac{xx}{3x} and \frac{3\times 3}{3x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-9}{3x}\left(\frac{x}{4}+\frac{4}{x}\right)
Do the multiplications in xx-3\times 3.
\frac{x^{2}-9}{3x}\left(\frac{xx}{4x}+\frac{4\times 4}{4x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and x is 4x. Multiply \frac{x}{4} times \frac{x}{x}. Multiply \frac{4}{x} times \frac{4}{4}.
\frac{x^{2}-9}{3x}\times \frac{xx+4\times 4}{4x}
Since \frac{xx}{4x} and \frac{4\times 4}{4x} have the same denominator, add them by adding their numerators.
\frac{x^{2}-9}{3x}\times \frac{x^{2}+16}{4x}
Do the multiplications in xx+4\times 4.
\frac{\left(x^{2}-9\right)\left(x^{2}+16\right)}{3x\times 4x}
Multiply \frac{x^{2}-9}{3x} times \frac{x^{2}+16}{4x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-9\right)\left(x^{2}+16\right)}{3x^{2}\times 4}
Multiply x and x to get x^{2}.
\frac{\left(x^{2}-9\right)\left(x^{2}+16\right)}{12x^{2}}
Multiply 3 and 4 to get 12.
\frac{x^{4}+16x^{2}-9x^{2}-144}{12x^{2}}
Apply the distributive property by multiplying each term of x^{2}-9 by each term of x^{2}+16.
\frac{x^{4}+7x^{2}-144}{12x^{2}}
Combine 16x^{2} and -9x^{2} to get 7x^{2}.